The following modules of the *funktionsrahmen*/function sheet relating to the Bosch Motronic ME7.1 ECU as fitted to the Audi R4-5V T transversely mounted 132 kW 1.8T engine have been translated by Nefmoto forum member "TTQS" in support of the guide to understanding remapping and in response to forum technical queries. They are also available on the Nefmoto wiki:

Module	English Title	Relevant to
ATM 00 50		
ATM 33.50	Exhaust Gas Temperature Model	Understanding exhaust gas temperature control in
		support of tuning high load & WOT fuelling (See
		LAMBTS 2.120)
ATR 1.60	Exhaust Gas Temperature Control	Understanding exhaust gas temperature control in
		support of tuning high load & WOT fuelling (See
D00D14 (7.40		
BGSRM 17.10	Cylinder Charge Detection, Intake	Calibration of KISRM when changing total engine
	Manifold Model	displacement (e.g. via reboring cylinders or fitting
		shorter conrods) or a new intake manifold with a
		different volume (interfaces with module FUEDK 21.90)
FUEDK 21 90	Cylinder Charge Control (Calculating	Understanding how Motronic implements calculation of
	Target Throttle Angle)	target throttle plate angles (interfaces with module
	raiget mitatie / ingle)	RCSPM 17 10)
	MAE Mater Overtere Dulastices	
GGHFM 57.60	MAF Meter System Pulsations	Understanding WAF sensor linearization curve
		(MLHFM) and sensor correction map (KFKHFM) when
		recalibrating MAF sensor
LAMBTS 2.120	Lambda for Component Protection	Tuning of high load & WOT fuelling (one of several
		methods being to calibrate lambda for component
		protection)
	Driver's Requested Lambda	Inderstanding the appropriate deployment of the 'basic
LAWFAW 7.100	Driver's Requested Latibua	fulling man's AMEA with respect to aprichments
		Tueiling map LAMFA with respect to enrichments
LAMKO 9.80	Lambda Coordination	Understanding the priority order for calculating the
		lambda target and which variables provide the lambda
		target under normal conditions with respect to tuning
		high load & WOT fuelling
LDRI MX 3 100	Calculation of LDR Maximum Cylinder	Calibration of WOT output via LDRXN
LBREAKCONCO	Charge rimay	
	Charge Breesure Regulation DID Control	Understanding charge pressure RID control algorithms
LDRFID 25.10	Charge Flessure Regulation FID Control	with respect to recalibration of baset pressure
		with respect to recalibration of boost pressure
LRSHK 9.20	Continuous Post-Catalyst Lambda	Understanding now pre- and post-cat lambda control
	Control	integrate when experiencing fault conditions with either
		system (not tuning related).
MDBAS 8.30	Calculation of the Basic Parameters for	Understanding the basic Motronic torque interface and
	the Torque Interface	the optimum torque map KFMIOP
MDFAW 12.260	Driver Requested Torque	Understanding how the Motronic torque-oriented
		structure is implemented including charge and crank-
		synchronous paths overrun fuel cut-off/reinstatement
		alibration of the appelerator padal map KEDED
MDFUE 8.50	Setpoint for Air Mass from Load Torque	Understanding now the Motronic torque-oriented
		structure is implemented and conversion of optimum
		torque to cylinder charge via map KFMIRL
MDKOG 14.70	Torque Coordination for Overall	Understanding how torgue demands are co-ordinated
	Interventions	in the Motronic torque-oriented structure and torque-
		intervention processes
	Calculating Targue at the Desired Ignition	Inderstanding how the Metronic torque oriented
1010200 1.120	Calculating Torque at the Desired Ignition	structure is increased in challenging the terror is floor
	Angle	structure is implemented including the torque influence
		on the ignition angle and anti-judder feature
RKTI 11.40	Calculation of Injection Time ti from	Calibrating for injector battery voltage correction,
	Relative Fuel Mass rk	different fuel pump pressure and different injector flow
		rates via KRKTE, correction of errors due to pulsation
		in returnless fuel systems
SLS 88 150	Secondary Air Control	Understanding secondary air system effects
71 IE 292 120	Fundamental Function Ignition	Understanding correction of the fundamental ignition
20E 202.130		timing angle for worm up angle and the subjects
		unning angle for warm-up angle and the cylinder-
		specific knock control angle to give the earliest possible
		(or basic) ignition angle and phase angle error
		correction to give the actual ignition angle
ZWGRU 23,110	Fundamental Ignition Angle	Understanding the fundamental ignition angle and
		provision for any necessary camshaft timing

ATM 33.50 (Exhaust Gas Temperature Model)

Refer to the *funktionsrahmen* for the following diagrams:

atm-main						
atm-atm-b1	Exhaust gas temperature model (cylinder bank 1) overview					
atm-tmp-stat	TMP_STAT engine speed & relative cylinder charge map and corrected for temperature for					
	acceleration, intake air temp., catalyst heating, catalyst warming, ignition angle, lambda and					
	cold engine					
atm-dynamik	Temperature dynamic for exhaust gas and catalytic converter temperature (in and near the					
	catalytic converter)					
atm-tabgm	Temperature dynamic: exhaust gas, exhaust pipe wall effect, from the exhaust gas					
-	temperature tabgm					
atm-tkatm	Temperature dynamic for the temperature near the catalytic converter					
atm-exotherme	Exothermic temperature increase near the catalyst from measurement sites tabgm to tikatm					
atm-tikatm	Temperature dynamic for the temperature in the catalytic converter					
atm-exoikat	Exothermic temperature increase in the catalyst from measurement sites tabgm to tikatm					
atm-kr-stat	Exhaust gas temperature in the exhaust manifold under steady-state conditions					
atm-kr-dyn	Exhaust gas temperature in the exhaust manifold under dynamic conditions					
atm-tmp-start	Calculation of the exhaust gas or exhaust pipe wall temperature at engine start					
atm-tpe-logik	Calculation of the dew point at the pre-cat and post-cat lambda probes					
atm-sp-nachl	Storage of the dew point conditions at engine switch off					
atm-mean	Calculation of etazwist average values					
atm-tmp-umgm	If no ambient temperature sensor is available, calculate a substitute from ambient					
	temperature (tans)					
atm-mst	If tabst w is not correct tabstatm = maximum value, request for delay B nlatm as a function					
	of engine speed and tatu-threshold)					

ATM 33.50 (Exhaust Gas Temperature Model) Function Description

The simulated exhaust gas temperatures tabgm and tabgkrm (for SY_TURBO = 1) and catalytic converter temperatures tkatm and tikatm are used for the following purposes:

1. Monitoring the catalyst. If the catalytic converter falls below its starting temperature, then a fault can be detected.

2. For lambda control on the probe after the catalytic converter. This control is only activated after engine start, when the catalyst has exceeded its start-up temperature.

3. For the probe heater control after engine start. If the simulated dew point is exceeded, the probe heater is turned on.

4. Monitoring the heated exhaust gas oxygen (HEGO) sensor (i.e. lambda probe) heating system. If the exhaust gas temperature exceeds 800°C for example, then the lambda probe heater will be switched off, so that the probe is not too hot.

5. For fan motor control.

6. For switching on component protection.

This function provides only a rough approximation of the exhaust gas and catalytic converter temperature profiles, whereas throughout the application especially the four monitoring areas (dew point profiles in the exhaust gas, catalytic converter monitoring, enabling and shutting off lambda probe heating and high temperatures for component protection) should be considered to be critical.

1. Basic function

Steady-state temperature (tatmsta): the same applies for takrstc

With the engine speed/relative cylinder charge map KFTATM the steady-state exhaust gas temperature before the catalyst is set. This temperature is corrected for ambient temperature or simulated ambient temperature from the characteristic ATMTANS:

during boost with the constant TATMSA,

during catalyst heating with the constant TATMKH; catalyst warming with the constant TATMKW with the ignition-angle efficiency map KFATMZW temperature as a function of ML and ETAZWIST with the desired lambda map KFATMLA temperature as a function of ML and LAMSBG_W for a cold engine block (TMOT – TATMTMOT) with TATMTMOT = 90°C.

The catalyst temperature (exothermic) is corrected for

Temperature increase with the characteristic KATMEXML or KATMIEXML as a function of air mass Temperature reduction with KLATMZWE or KLATMIZWE as a function of etazwimt (ignition angle influence) Lambda influence with KLATMLAE or KLATMILAE as a function of lambsbg_w Temperature set at TKATMOE or TIKATMOE at tabgm <TABGMEX or B_sa = 1

Different temperature increases are applied for the temperature in the catalytic converter tikatm and the temperature after the catalytic converter tkatm due to exothermic reaction and cooling and different ignition angles and lambda-corrections.

The time-based influence of the exhaust gas temperature before the catalytic converter:

Using a PT1 filter (filter time constant ZATMAML) the dynamics of the exhaust gas temperature are simulated and with a PT1 filter (time constant ZATMRML) the dynamics of the inlet manifold wall temperature are simulated.

The exhaust gas temperature and inlet manifold wall temperature are weighted by the division factor FATMRML.

The catalytic converter temperature tkatm is calculated from the exhaust gas temperature tabgm along with the PT1 filter (filter time constant ZATMKML).

The temperature in the catalyst tikatm is modelled from the exhaust gas temperature tabgm via three filters (time constant ZATMIKML) using the heat transfer principle. Due to a thrust caused by the small air mass flow in the catalytic converter, there is a possible exhaust gas temperature increase due to the greater influence on the matrix temperature by the exhaust gas throughput. This thrust-based temperature increase can be modelled by the positive B_sa side with a temperature, which is composed of the catalyst temperature tikatm and an offset TATMSAE, will be initialised. The time constants of the PT1-filter ZATMIKML are represented by air-mass-dependent characteristic curves.

The initial values for the exhaust and catalyst temperature at engine start can be calculated from the temperatures at switch-off and delay times. The starting values for the exhaust gas and catalyst temperatures should approximate to the manifold wall temperatures at the probe insertion points a few minutes after switch-off. The filter for the exhaust gas temperature is stopped by setting B_stend = 0. The filter for the manifold wall temperature is stopped when B_atmtpa = 1. The filter for the catalyst temperature will be enabled only when B_atmtpk = 1.

2. Dew Point Detection

TKSTBFA.

Initial values for the exhaust gas temperature tabgmst and catalyst temperature tkatmst

When stopping the engine (C_nachl $0 \rightarrow 1$) the temperatures tabgm and tkatm are stored.

When starting the engine, the initial temperatures tabgmst and tkatmst are calculated from the switchoff temperature (corrected for ambient temperature) and a factor obtained from maps KFATMABKA or KFATMABKK as a function of tabstatm and tatu.

During power fail the switch-off temperature will be determined from the constant TATMSTI. For test condition ($B_{faatm} = 1$), the initial temperatures are given by the constants TASTBFA and

Integrated Heat Quantity iwmatm_w

The dew point end time is approximately proportional to the heat quantity after engine start. The heat quantity = Integral (temp. × air mass × C_p) is calculated from the steady-state exhaust gas temperature tatmsta plus TATMWMK multiplied by the air mass. The result of the integration multiplied by the heat capacity at constant pressure C_p (approximately 1 kJ/kgK) gives the heat quantity.

Dew point end for the pre-cat lambda probe B_atmtpa and post-cat lambda probe B_atmtpk

The calculated exhaust gas temperature at engine start tabgmst approximates to the exhaust pipe wall temperature. If the exhaust pipe wall temperature is greater than 60°C for example then no condensation occurs. The values in the map KFWMABG for these temperatures are less than 14 kJ, so the dew point end is detected immediately, or after only a few seconds.

For catalytic converter heating with thermal reaction ($B_trkh = 1$) the values in maps KFWMABG or KFWMKAT are multiplied by the factor WMKATKH or WMABGKH respectively. Thus, the dew point end-times are very short for this mode of operation.

Repeated starts (extension of the dew point-end-times)

If the engine had not reached the dew point end (B_atmtpa = 0 and B_atmtpf = 0) then when the engine restarts, the counter zwmatmf is increased by 1. After several periods of very short engine running (e.g. 3), the counter zwmatmf value would be set equal to 3. With a constant FWMABGW = 0.25 for example, the values in the map KFWMABG increase by a factor equal to (zwmatmf \times

KFWMABG + 1) = 1.75. When the engine starts, the dew point end time from the last engine run is detected and the counter zwmatmf is reset.

Storage of the dew point end condition in the delay

For the determination of repeat start dew point end the conditions B_atmtpa in the flag B_atmtpf and B_atmtpk in the flag B_atmtpl are saved at engine switch-off due to a regular switch-off using the ignition or stall (B_stndnl). The function of dew point end for the post-cat lambda probe B_atmtpk is analogous to the function for B_atmtpa.

3. Calculation of a simulated ambient temperature from the intake air temperature (tans) if no ambient temperature sensor is available.

The simulated temperature tatu will be used for calculating the temperature correction via the characteristic ATMTANS and for determining the starting temperatures tabgmst and tkatmst. The intake air temperature (tans) is corrected with the constant DTUMTAT and under certain conditions stored in continuous RAM. If for example at engine start, the temperature tatu > tans, then the temperature value tatu is set on the lower tans value.

With the constant TATMWMK (negative value) the difference in dew point end between catalyst heating and no catalyst heating can be increased.

When catalytic converter heating is active $B_khtr = 1$ and the bit B_atmtpa can be set equal to 1 immediately after engine start. This is possible only when no problematic condensation is formed during catalyst heating. With the system constants SY_STERVK = 1 cylinder bank 2 can be applied separately for stereo systems. For SY_TURBO = 1 the exhaust gas temperature tabgm is essentially identical in addition to the modeled temperature in the manifold tabgkrm.

ATM 33.50 Application Notes

1. Installation locations for temperature sensors in this application, running in the direction of flow:

- In probe installation position before catalytic converter-

1. Exhaust gas temperature (pipe centre) for the high temperatures at high loads for probe heater switch off

2. Manifold wall temperature for the determination of the dew-end times. (Condensation protection) - Before the catalytic converter

3. Exhaust gas temperature (pipe centre) for the catalyst start-up temperature

- In the catalytic converter

4. Ceramic temperature in and after catalytic converter (in the last third of the catalytic converter or behind the adjoining matrix) to determine the air-mass-dependent time constants.

- After the catalytic converter

5. Pipe wall temperature at probe installation site for the determination of the dew-end times (condensation protection).

Temperature measuring point 3 can be omitted if the distance from probe to catalytic converter is smaller than about 30 cm. The temperature drop from probe installation site to catalytic converter can then be neglected.

For the application of the functional data the modelled temperatures will always be compared with the measured temperatures and the functional data amended until a sufficiently high accuracy is achieved. In so doing, it will be the actual catalyst temperature, the temperature increase due to the exothermic reaction is not considered in the model.

2. Map KFTATM

For the determination of the steady-state temperature for example, before the catalytic converter the temperature corrections should not function. The cooling capacity of the wind on the dynamometer or on the measuring wheel can be simulated only very roughly at the higher engine load range. The map values can be determined on the rolling road dynamometer, but should be corrected on an appropriate test drive.

3. Temperature Corrections

- TATMSA

Boost can cause low exhaust temperatures that fall below the starting temperature of the catalyst. The longer the time period for the thrust condition, the lower the exhaust and catalyst temperatures. For catalyst diagnosis during boost, the exhaust gas temperature model is more likely to calculate a lower value than the measured temperature.

- ATMTANS

At low ambient temperatures, exhaust gas temperature can fall below the catalyst start-up temperature. Therefore, the model temperature is only corrected at the low temperature range.

- TATMKH

As long as the catalyst-heating measures are effective, higher exhaust temperatures will result.

- TATMKW

The catalyst operating temperature will not be not reached during prolonged idling, so the exhaust gas temperature can be raised by the catalyst warming function.

- KFATMZW

The temperature increase as a result of ignition angle retardation can be determined on a rolling road dynamometer. First, on the dynamometer, the characteristic field values KFTATM are applied without ignition angle correction. Ignition angles are then modified so that allowed etazwist values will result in the map. Through the corresponding air mass, the temperature increase will then be displayed in the map KFATMZW. - KFATMLA

The exhaust temperature is reduced by enrichment. The application is similar to KFATMZW, except that the ignition angle efficiency is changed instead of the enrichment factor.

- TATMTMOT

The map KFTATM is applied with a warm engine. Thus, the model exhaust gas temperature has smaller deviations during cold start. For this operating mode, the temperature is corrected with the difference of the cold engine temperature and the warm engine temperature.

TATMTMOT should be about 90 to 100°C.

4. Maps ZATMAML, ZATMRML, FATMRML, ZATMKML, ZATMKKML, ZATMIKML und ZATMIKKML

The air-mass-dependent time constants ZATMAML, ZATMRML (temperature measuring points 1 or 3), and ZATMKML, ZATMKML, ZATMIKML, ZATMIKKML (temperature measuring point 4), can help to more accurately determine "spikes in the air mass" during sudden load variations. Thereby "air mass jumps" at full load and in particular during boost can be avoided. For example, for an air mass jump from 30 kg/hr to 80 kg/hr, the measured time constant is applied to the air mass flow of 80 kg/hr. For large air mass jumps during idle, the time constants ZATMKKML and ZATMIKKML can be input instead of ZATMKML or ZATMIKML if required.

5. Block EXOTHERME:

- KATMEXML

The exothermic temperature is a function of air mass flow (warming by realizing emissions, reducing warming via a larger air mass). First KATMEXML applies, then KLATMZWE, KLATMLAE.

- KLATMZWE

When ignition angle retardation increases the temperature before the catalyst, the catalyst temperature drops.

- KLATMLAE

For lambda < 1 (richer), the air mass is lacking to improve emissions so the catalyst temperature decreases. - TABGMEX

If the temperature before the catalyst tabgm < TABGMEX (catalyst switch-off temperature) then the temperature correction = TKATMOE.

- TKATMOE

Temperature correction during boost or through tabgm> TABGMEX

- TATMSAE

Temperature increase in the boost in the catalyst in terms of tkatm Block EXOIKAT:

- KATMIEXML, KLATMIZWE, KLATMILAE, TIKATMOE

Application depends on the application for Block EXOTHERME

- TATMSAE

Temperature increase in the thrust in the catalyst in terms of tikatm

6. Dew point end times for exhaust gas temperatures vary greatly between the centre of the exhaust pipe and the pipe wall. Dew point end times for the tube wall temperatures before the catalyst (temperature measuring points 2) or after the catalyst (temperature measuring points 5) should be used. These times are usually due to delaying control readiness for too long, in which case the temperature gradients at the probe mounting location must be examined more closely. To avoid probe damage by "water hammer", the sensor heater must be fully turned on until the dew point temperature is exceeded or the dew point end time is detected thus condensation will no longer occur.

When the switch-off time in the ECU delay is calculated, then the switch-off time tabst_w after ECU delay will be incorrect. At engine start after ECU delay, the switch-off time tabstatm therefore, will be set to the

maximum value of 65,535 (i.e. 2^{16} -1). The ECU delay requirement for the time TNLATM when engine speed > TNLATMTM & tumg (tatu) > TNLATMTU.

8. For blocks KR_STAT and KR_DYN as appropriate, the descriptions in points 3 and 4 shall apply.

Typical Values:

KFTATM: x: engine speed/RPM, y: relative cylinder charge/%, z: temperature/°C

	800	1200	1800	2400	3000	4000	5000	6000
15	380	400	420	450	480	520	550	580
22	400	420	450	480	520	550	580	610
30	420	450	480	520	550	580	610	650
50	450	480	520	550	580	610	650	700
70	470	520	550	580	610	660	700	750
100	490	550	580	610	650	700	750	790
120	510	560	610	650	700	750	790	840
140	530	580	650	700	750	790	840	900

KFATMZW: x: temperature/°C, y: ml_w/kg/hr, z: etazwimt

	20	40	80	150	250	400
1.00	0.0	0.0	0.0	0.0	0.0	0.0
0.95	15	40	50	60	70	75
0.90	15	60	80	100	125	140
0.80	20	80	120	150	180	200
0.70	25	100	150	190	210	220
0.60	30	115	175	210	230	245

KFATMLA: x: temperature/°C, y: ml_w/kg/hr, z: lamsbg_w

	20	40	80	150	250	400
1.15	5	10	30	50	60	70
1.00	0.0	0.0	0.0	0.0	0.0	0.0
0.95	5	10	20	30	40	45
0.90	15	25	40	50	60	75
0.80	30	40	60	70	85	100
0.70	40	60	80	90	100	120

KFWMABG: x: energy/kJ, y: tabgmst/°C, z: tmst/°C

	-40	0	15	25	30	55	60
-40	200	160	150	140	100	60	30
0	180	150	120	110	80	50	20
15	160	140	60	55	30	40	0.45
25	140	120	30	30	15	10	0.45
60	120	30	20	15	10	5	0.45

KFWMKAT values correspond to KFWMABG × 5

In the heat quantity maps KFWMABG and KFWMKAT a value of 0.0 is never required! It should always have at least the value to be entered; the 2 sec corresponds to idle after cold start. Only then does the repeat-start counter operate after several starts where the dew point was not reached.

 $\label{eq:2.2} ZATMAML\ ml_w/kg/hr,\ Time\ constant/sec\ 10,\ 30\ ;\ 20,\ 20\ ;\ 40,\ 13\ ;\ 80,\ 5\ ;\ 180,\ 4\ ;\ 400,\ 3\ ;\ 600,\ 2\ ;\ ZATMKML\ ml_w/kg/hr,\ Time\ constant/sec\ 10,\ 150\ ;\ 20,\ 60\ ;\ 40,\ 35\ ;\ 80,\ 20\ ;\ 180,\ 10\ ;\ 400,\ 7\ ;\ 600,\ 4\ ;\ 400,\ 4\ ;\ 400,\ 7\ ;\ 600,\ 4\ ;\ 400,\ 7\ ;\ 600,\ 4\ ;\ 400,\ 7\ ;\ 600,\ 4\ ;\ 400,\ 7\ ;\ 600,\ 4\ ;\ 400,\ 7\ ;\ 600,\ 4\ ;\ 400,\ 7\ ;\ 600,\ 4\ ;\ 400,\ 7\ ;\ 600,\ 4\ ;\ 400,\ 7\ ;\ 600,\ 4\ ;\ 400,\ 7\ ;\ 600,\ 4\ ;\ 400,\ 7\ ;\ 600,\ 4\ ;\ 400,\ 7\ ;\ 600,\ 4\ ;\ 600,\ 4\ ;\ 600,\ 4\ ;\ 600,\$

ZATMIKML value represents approximately ZATMKML \times 0.3

ZATMKKML for neutral input, the data must correlate to ZATMKML

ZATMIKKML for neutral input, the data must correlate to ZATMIKML

ZATMRML ml_w/kg/hr, Time constant/sec 10, 300 ; 20, 80 ; 40, 55 ; 80, 30 ; 180, 20 ; 400, 10 ; 600, 7 ;

FATMRML ml_w/kg/hr, Time constant/sec 10, 0.5 ; 20, 0.6 ; 40, 0.7 ; 80, 0.8 ; 180, 0.95 ; 400,0.95 ; 600, 0.96;

KATMEXML ml_w/kg/hr, Time constant/sec 10, 0 ; 20, 0 ; 40, 0 ; 80, 0 ; 180, 0 ; 400, 0 ;

ATM 33.50 (Exhaust Gas Temperature Model)

KLATMZWE etazwimt, Factor 1, 0 ; 0.95, 0 ; 0.9, 0 ; 0.8, 0 ; 0.7, 0 ; 0.6, 0 ; KLATMLAE lamsbg_w, Factor 1.15, 0 ; 1 , 0 ;0.95, 0 ; 0.9, 0 ; 0.8, 0 ; 0.7, 0 ; TATMTP: 52°C TKATMOE: 0°C TATMSAE: 0°C KATMIEXML ml_w/kg/hr, Time constant/sec 10, 0 ; 20, 0 ; 40, 0 ; 80, 0 ; 180, 0 ; 400, 0 ; KLATMIZWE etazwimt, Factor 1, 0 ; 0.95, 0 ; 0.9, 0 ; 0.8, 0 ; 0.7, 0 ; 0.6, 0 ; KLATMILAE lamsbg_w, Factor 1.15, 0 ; 1 , 0 ;0.95, 0 ; 0.9, 0 ; 0.8, 0 ; 0.7, 0 ; TIKATMOE: 0°C

KFATMABKA: x: tatu/°C, y: tabstatm_w/seconds, z: no units

	10	50	180	360	600	1000
-40	0.95	0.70	0.50	0.30	0.15	0.00
-15	0.95	0.70	0.50	0.30	0.15	0.00
0	0.95	0.70	0.50	0.30	0.15	0.00
15	0.95	0.70	0.50	0.30	0.15	0.00
40	0.95	0.70	0.50	0.30	0.15	0.00

KFATMABKK: x: tatu/°C, y: tabstatm_w [s], z: no units

ATMTANS tatu/°C, Temp./°C -40, 60 ; -10, 20 ; 20, 0 ;

	10	50	180	360	600	1000
-40	0.90	0.60	0.40	0.25	0.15	0.00
-15	0.90	0.60	0.40	0.25	0.15	0.00
0	0.90	0.60	0.40	0.25	0.15	0.00
15	0.90	0.60	0.40	0.25	0.15	0.00
40	0.90	0.60	0.40	0.25	0.15	0.00

TATMSA: 100°C TATMKH: 80°C TATMTRKH: 200°C TATMKW: 100°C TATMTMOT: 90°C TATMSTI: 20°C TASTBFA: 40°C TKSTBFA: 40°C TATMWMK: -80°C WMABGKH: Factor of 1.0 WMKATKH Factor of 1.0 FWMABGW Factor of 0.25 FWMKATW Factor of 0.25 DTUMTAT: 20°C VTUMTAT: 40 km/h NTUMTAT: 1800 rpm IMTUMTAT: 1 kg TUMTAIT: 20°C TNLATMTM: 80°C TNLATMTU: 5°C TNLATM: 660 seconds Only when SY_TURBO = 1: For neutral input (tabgkrm w = tabgm w) KFATMKR = KFTATM KFATZWK = KFATMZW KFATLAK = KFATMLA TATMKRSA = TATMSA ZATRKRML = ZATMRML ZATAKRML = ZATMAML FATRKRML = FATMRML ATMTANS tans/°C, Temp./°C -40, 40 ; -20, 25 ; 0, 12 ; 20, 0 ; 60, -30 The functional data for cylinder bank 2 correspond to the functional data from cylinder bank 1 Note: In order that ATM 22:20 for the application is backward compatible the default values should be entered thus: KATMEXML, KLATMZWE, KLATMLAE, TKATMOE = 0 and TABGMEX = 1220°C.

In order that ATM 33.10 remains application-neutral with ATM 22.50, TATMTRKH must be set equal to TATMKH and WMKATKH should be set equal to 1. Tikatm is not used in a function because the input can be used in the path in the exhaust gas temperature model without impact on safety, however, the default values for KATMIEXML, KLATMIZWE, KLATMILAE and TIKATMOE should be set equal to 0 and TABGMEX = 1220°C.

In DKATSP areas TMINKATS and TMAXKATS, a high accuracy is required for tikatm!

. .

Parameter	Description
ATMTAKR	Correction for the manifold temperature
ATMTANS	Temperature correction for the exhaust gas temperature model
DTUMTAT	Offset: intake air temperature \rightarrow ambient temperature
FATMRMI	Eactor for the difference between exhaust gas & exhaust nine wall temperature
FATMRMI 2	Factor for the difference between exhaust gas a schaust pipe wall temperature cylinder bank 2
FATRKRMI	Factor for the difference between exhaust gas a wall temperature in the manifold
FATRKRML2	Factor for the difference between exhaust gas & wall temperature in the manifold, cylinder bank 2
FWMABGW	Factor for heat quantity during repeated starts for pre-cat exhaust gas dew points
FWMABGW2	Factor for heat quantity during repeated starts for pre-cat exhaust gas dew points, cylinder bank 2
FWMKATW	Factor for heat quantities during repeated starts for dew points after main catalyst
FWMKATW2	Factor for heat quantities during repeated starts for dew points after main catalyst, cylinder bank 2
IMTUMTAT	Integration threshold air mass for determining ambient temperature from TANS
KATMEXML	Exothermic reaction temperature in catalyst, tkatm
KATMEXML2	Exothermic reaction temperature in catalyst, cylinder bank 2
KATMIEXML	Exothermic reaction temperature in catalyst, tikatm
KATMIEXML2	Exothermic reaction temperature in catalyst, tikatm, cylinder bank 2
KFATLAK	Map for lambda correction for manifold exhaust gas temperature
KFATLAK2	Map for lambda correction for manifold exhaust gas temperature, cylinder bank 2
KFATMABKA	Factor for exhaust gas temperature decrease as a function of stop time and ambient temperature
ΚΕΔΤΜΔΒΚΔ2	Factor for exhaust gas temperature decrease as a function of stop time and ambient temperature,
	cylinder bank 2
KFATMABKK	Factor for reducing the catalyst temperature as a function of stop time and ambient temperature
KFATMABKK2	Factor for reducing the catalyst temperature as a function of stop time and ambient temperature,
	cylinder bank 2
KFATMKR	Map for steady-state manifold exhaust gas temperature as a function of engine speed and relative
	cylinder charge
KFATMKR2	Map for steady-state manifold exhaust gas temperature, cylinder bank 2
KFAIMLA	Map for exhaust gas temperature correction as a function of lambda
KFAIMLA2	Map for exhaust gas temperature correction as a function of lambda, cylinder bank 2
	Map for exhaust gas temperature correction as a function of ignition angle correction
	Map for exhaust gas temperature correction as a function of ignition angle, cylinder bank 2
	Map for ignition angle correction for manifold gas temperature
	Map for exhaust ass temperature as a function of engine speed and relative cylinder charge
	Map for exhaust gas temperature as a function of engine speed and relative cylinder charge
KFTATM2	cylinder bank 2
KEWMARG	Man for heat quantity threshold exhaust gas dew points
KEWMABG2	Man for heat quantity threshold exhaust as dew points cylinder hank 2
KEWMKAT	Map for heat quantity threshold dew points after catalyst
KEWMKAT2	Map for heat quantity threshold dew points after catalyst cylinder bank 2
KLATMILAE	Exothermic temperature decrease through enrichment, tikatm
KLATMILAE2	Exothermic temperature decrease through enrichment, tikatm, Bank 2
KLATMIZWE	Exothermic temperature decrease in catalyst at later ignition angles, tikatm
KLATMIZWE2	Exothermic temperature decrease in catalyst at later ignition angles, tikatm, Bank 2
KLATMLAE	Exothermic temperature decrease through enrichment
KLATMLAE2	Exothermic temperature decrease through enrichment, cylinder bank 2
KLATMZWE	Exothermic temperature decrease in catalyst at later ignition angles, tkatm
KLATMZWE2	Exothermic temperature decrease in catalyst at later ignition angles, cylinder bank 2
NTUMTAT	Speed threshold for determining ambient temperature from TANS
SEZ06TMUB	Sample point distribution, ignition angle efficiency
SLX06TMUW	Sample point distribution, desired lambda
SLY06TMUW	Sample point distribution, desired lambda, cylinder bank 2
SML06TMUW	Sample point distribution, air mass, 6 sample points
SML07 FMUW	Sample point distribution, air mass, 7 sample points
SM106FMUW	Sample point distribution, air mass, 6 sample points

ATM 33.50 (Exhaust Gas Temperature Model)

ST107TMUB Sample point distribution, start temperature at front probe Sample point distribution, start temperature at front probe, cylinder bank 2 ST207TMUB ST307TMUB Sample point distribution, start temperature at rear probe ST407TMUB Sample point distribution, start temperature at rear probe, cylinder bank 2 STM05TMUB Sample point distribution, engine start temperature STS06TMUW Sample point distribution, exhaust gas mass flow Sample point distribution, simulated ambient temperature STU05TMUB SY_STERVK System constant condition: stereo before catalyst SY_TURBO System constant: turbocharger Exhaust gas temperature below the catalyst switch-off temperature TABGMEX TASTBFA Model temperature before pre-cat initial value via B_faatm requirement Exhaust gas temperature correction via catalyst heating active TATMKH TATMKH2 Exhaust gas temperature correction via catalyst heating active, cylinder bank 2 TATMKRSA Exhaust gas temperature correction in manifold via boost switch-off TATMKW Exhaust gas temperature correction with catalyst warming active TATMSA Exhaust das temperature correction via boost cut-off TATMSAE Exothermic temperature increase in boost TATMSAE2 Exothermic temperature increase in boost, cylinder bank 2 TATMSTI Initial value for tabgm, tkatm intial value through power fail TATMTMOT Engine temperature warmer Motor, for temperature correction during cold start conditions TATMTP Exhaust gas dew point temperature Exhaust gas temperature correction via thermal reaction catalyst heating TATMTRKH TATMTRKH2 Exhaust gas temperature correction via thermal reaction catalyst heating, cylinder bank 2 TATMWMK Temperature offset for calculating heat quantities TIKATMOE Temperature correction in catalyst without exothermic reaction, tikatm TKATMOE Temperature correction near catalyst without exothermic reaction, tkatm TKSTBFA Model temperature post-cat initial value via B_faatm requirement TNLATM Minimum ECU delay time for exhaust gas temperature model - Abstellzeit TNLATMTM When tmot > threshold ECU delay requirement B_nlatm = 1 TNLATMTU When tumg (tatu - ATM) > threshold ECU delay requirement TUMTAIT Initialising value for ambient temperature from TANS VTUMTAT Vehicle speed threshold for TANS \rightarrow ambient temperature WMABGKH Factor for heat quantity correction via catalyst heating for dew points WMABGKH2 Factor for heat quantity correction via catalyst heating for dew points, cylinder bank 2 WMKATKH Factor for heat quantity correction via catalyst heating for dew points after catalyst WMKATKH2 Factor for heat quantity correction via catalyst heating for dew points after catalyst, cylinder bank 2 ZATAKRML Time constant for exhaust gas temperature model (manifold) ZATAKRML2 Time constant for exhaust gas temperature model (manifold), cylinder bank 2 Time constant for exhaust gas temperature model ZATMAML Time constant for exhaust gas temperature model, cylinder bank 2 ZATMAML2 Time constant for catalyst temperature model - Temperature in catalyst tikatm during cooling ZATMIKKML Time constant for catalyst temperature model - Temperature in catalyst tikatm during cooling, bank 2 ZATMIKKML2 Time constant for catalyst temperature model - Temperature in catalyst, tikatm ZATMIKML ZATMIKML2 Time constant for catalyst temperature model – Temperature in catalyst, cylinder bank 2 ZATMKKML Time constant for catalyst temperature model - catalyst temperature tkatm during cooling ZATMKKML2 Time constant for catalyst temperature model - catalyst temperature tkatm during cooling, bank 2 Time constant for catalyst temperature model – catalyst temperature tkatm Time constant for catalyst temperature model – catalyst temperature, cylinder bank 2 ZATMKML ZATMKML2 ZATMRML Time constant for exhaust gas temperature model - exhaust pipe wall temperature ZATMRML2 Time constant for exhaust gas temperature model - exhaust pipe wall temperature Bank 2 ZATRKRML Time constant for exhaust gas temperature model - manifold wall temperature ZATRKRML2 Time constant for exhaust gas temperature model - manifold wall temperature, cylinder bank 2 Variable Description **B_ATMLL** Condition for time constant during cooling at idle **B_ATMLL2** Condition for time constant during cooling at idle Condition for tabamst, tkatmst initial value calculation B ATMST **B** ATMST2 Condition for tabgmst, tkatmst calculation, cylinder bank 2 Β ΑΤΜΤΡΑ Condition: dew point before catalyst exceeded **B_ATMTPA2** Condition: dew point 2 before catalyst exceeded **B_ATMTPF** Condition: dew point before catalyst exceeded (last trip) **B_ATMTPF2** Condition: dew point before catalyst exceeded (last trip) cylinder bank 2 B ATMTPK Condition: dew point after catalyst exceeded **B_ATMTPK2** Condition: dew point 2 after catalyst exceeded **B_ATMTPL** Condition: dew point after catalyst exceeded (last trip) **B_ATMTPL2** Condition: dew point after catalyst exceeded (last trip) cylinder bank 2 **B_FAATM** Condition: functional requirements for dew point end times B_KH Condition: catalyst heating B KW Condition: catalyst warming B LL Condition: idle **B_NACHL** Condition: ECU delay

B NACHLEND Condition: ECU delay ended Condition: ECU delay exhaust gas temperature model probe protection **B_NLATM B_PWF** Condition: Power fail B SA Condition: Overrun cut-off **B_ST** Condition: Start **B_STEND** Condition: End of start conditions achieved **B_STNDNL** Condition: Beginning of ECU delay or end of start conditions $(1 \rightarrow 0)$ Condition: Ambient temperature sensor available B_TFU **B_TRKH** Condition: Catalyst heating, thermal reaction effective **B_UHRRMIN** Condition: timer with a relative number of minutes **B UHRRSEC** Condition: timer with a relative number of minutes DFP_TA ECU internal error path number: intake air temperature TANS (charge air) DFP_TUM ECU Internal error path number: ambient temperature **ETAZWIMT** Actual ignition angle efficiency average for exhaust gas temperature model (200 ms) **ETAZWIST** Actual ignition angle efficiency E_TA Error flag: TANS E TUM Error flag: ambient temperature tump IMLATM Integral of air mass flows from engine start bis Max.wert IMLATM W Integral of air mass flows from end of start conditions up to the maximum value, (Word) IWMATM2 W Heat quantity for Condensation - dew points exhaust gas/catalyst (word), cylinder bank 2 IWMATM W Heat quantity for Condensation - dew points exhaust gas/catalyst (word) LAMSBG2_W Desired lambda limit (word), cylinder bank 2 LAMSBG_W Desired lambda limit (word) Filtered air mass flow (word) ML W NMOT Engine speed RL Relative cylinder charge TABGKRM2_W Exhaust gas temperature in manifold from the model, cylinder bank 2 TABGKRM_W Exhaust gas temperature in manifold from the model TABGM Exhaust gas temperature before catalyst from the model TABGM2 Exhaust gas temperature before catalyst from the model, cylinder bank 2 TABGM2_W Exhaust gas temperature before catalyst from the model (word) cylinder bank 2 TABGMAB Exhaust gas temperature during engine switch-off TABGMAB2 Exhaust gas temperature during engine switch-off (model) cylinder bank 2 TABGMST Exhaust gas temperature at engine start TABGMST2 Exhaust gas temperature at engine start, cylinder bank 2 TABGM W Exhaust gas temperature before catalyst from the model (word) TABSTATM W Stop time in ECU delay for exhaust gas temperature model TABSTMX W Stop time maximum query for exhaust gas temperature model TABST_W Stop time TAKRKF Steady-state manifold exhaust gas temperature without correction TAKRKF2 Steady-state manifold exhaust gas temperature without correction, cylinder bank 2 TAKRSTC Steady-state exhaust gas temperature in manifold in °C TAKRSTC2 Steady-state exhaust gas temperature in manifold, cylinder bank 2 TANS Intake air temperature TATAKRML Output from PT1 element: exhaust gas temperature influence on tabgkrm TATAKRML2 Output from PT1 element: exhaust gas temperature influence on tabgkrm, cylinder bank 2 TATMAML Output from PT1 element: exhaust gas temperature influence on tabgm TATMAML2 Output from PT1 element: exhaust gas temperature influence on tabgm, cylinder bank 2 TATMKF Exhaust gas temperature before catalyst from map KFTATM TATMKF2 Exhaust gas temperature before catalyst from map KFTATM, cylinder bank 2 TATMRML Output from PT1 element: exhaust pipe wall temperature effect from tabgm Output from PT1 element: exhaust pipe wall temperature effect from tabgm, cylinder bank 2 TATMRML2 Exhaust gas temperature before catalyst from the steady-state model TATMSTA TATMSTA2 Exhaust gas temperature before catalyst from the steady-state model, cylinder bank 2 TATRKRML Output from PT1 element: exhaust pipe wall temperature effect from tabgkrm TATRKRML2 Output from PT1 element: exhaust pipe wall temperature effect from tabgkrm, cylinder bank 2 TATU Intake air temperature or ambient temperature TEXOIKM2 W Exotherme temperature increase in catalyst for tikatm, cylinder bank 2 TEXOIKM_W Exotherme temperature increase in catalyst for tikatm TEXOM2_W Exotherme temperature increase in catalyst for tkatm2, cylinder bank 2 TEXOM_W Exotherme temperature increase in catalyst for tkatm TIKATM Exhaust gas temperature in catalyst from the model TIKATM2 Exhaust gas temperature in catalyst from the model, cylinder bank 2 TIKATM2_W Exhaust gas temperature in catalyst from the model, cylinder bank 2 TIKATM W Exhaust gas temperature in catalyst from the model TKATM Catalyst temperature from the model TKATM2 Catalyst temperature from the model, cylinder bank 2 Catalyst temperature from the model (word), cylinder bank 2 TKATM2 W TKATMAB Exhaust gas temperature after catalyst through engine switch-off (model) TKATMAB2 Exhaust gas temperature after catalyst through engine switch-off (model), cylinder bank 2

ATM 33.50 (Exhaust Gas Temperature Model)

TKATMST	Catalyst temperature model initial value as a function of switch-off value, switch-off time
TKATMST2	Catalyst temperature model initial value as a function of switch-off value, switch-off time, bank 2
TKATM_W	Catalyst temperature from the model (word)
TMOT	Engine temperature
TMST	Engine start temperature
TUMG	Ambient temperature
VFZG	Vehicle speed
ZWMATM	Counter for repeated starts and factor for heat quantity threshold
ZWMATM2	Counter for repeated starts and factor for heat quantity threshold, cylinder bank 2
ZWMATMF	Counter for repeated starts and factor for heat quantity threshold upstream
ZWMATMF2	Counter for repeated starts and factor for heat quantity threshold upstream, cylinder bank 2

See the *funktionsrahmen* for the following diagrams:

atr-main	exhaust gas temperature control overview
atr-atrbb	detection of control range
atr-atrb	exhaust gas temperature control for cylinder bank 1
atr-atrerb	enabling exhaust gas temperature control for cylinder bank 1
atr-atrpi	exhaust gas temperature proportional/integral control for cylinder bank 1
atr-atrb2	exhaust gas temperature control for cylinder bank 2
atr-atrerb2	enabling exhaust gas temperature control for cylinder bank 2
atr-atrpi2	exhaust gas temperature proportional/integral control for cylinder bank 2
atr-atrnl	limp mode for exhaust gas temperature control
atr-atrko	coordination of the control output

ATR 1.60 Function Description

<u>Task:</u>

Protection of components (manifold, turbocharger, etc.) by controlling the exhaust gas temperature. By means of this control, the general enrichment at high load and speed ("full-load enrichment") can be reduced. When general mixture control is insufficient, the exhaust gas temperature control enrichment must also be invoked which leads to reduced fuel consumption.

Principle:

An excessively high exhaust gas temperature can be lowered by enriching the air-fuel mixture. Through this enrichment, more fuel enters the cylinder than is required for stoichiometric combustion of the fuel. The unburned fuel vaporises on the cylinder walls and cools them, whereby the exhaust gas temperature decreases. For this control, the exhaust gas temperature is measured using an exhaust gas temperature sensor or estimated by an exhaust gas temperature model.

As long as the exhaust temperature is below the threshold temperature, there is no control. Thus, there is only a "down regulation" of the exhaust temperature, not an "up regulation". If the desired temperature is reached or exceeded, the control switches. To achieve an enrichment of the mixture, the controller is adjusted to give a desired value of lambda in the "rich" region. This enrichment decreases the exhaust gas temperature, and the controller sets the desired exhaust temperature. When the exhaust temperature drops back below the threshold temperature, the controller takes back the enrichment. If enrichment is no longer required, control is switched off.

Overview of Codeword CATR:

Bit No.	7	6	5	4	3	2	1	0
								*

*If the value of bit 0 is set equal to 1, this enables exhaust gas temperature control.

ATRBB: Detection Control Range

This function detects the valid control range. Via the configuration byte CATR, the control can, in principle, be switched off. A valid range is usually present when the end of start conditions is detected ($B_stend = 1$), and the relative load (rl) lies above an applicable threshold rlatr. This control scheme is only available in the near-full load range (rl > rlatr) is active, since exhaust temperatures are only likely to be high in this range. Once the range is exited, control is switched off, e.g. in the transition to idle to shorten the duration of the enrichment.

The valid control range is indicated by the flag $B_{atrb} = 1$.

ATRERB: Enabling Exhaust Gas Temperature Control for Bank 1

The exhaust gas temperature control is a flip-flop on or off. The condition flag $B_atr = 1$ indicates that control is active. If the exhaust gas temperature (tabg) is greater than or equal to the applicable threshold value TABGSS, the control is switched on. The control is switched off when enrichment is no longer required. This is the case when the regulator output dlatr > 0. The controller output dlatr for the exhaust temperature control is then set to zero. It is possible to set a lean limit for the control scheme via the fixed value LATRO. If the current set-lambda without add. If the current desired lambda value without additional lamvoa parts above

the limit LATRO (in the lean range) there will be no control. In addition, there is no control if any of the following conditions are met:

- (a) No valid control range is detected $(B_atrb = 0)$
- (b) Fuel injector cut-off condition is true (B_bevab = 1)
- (c) The exhaust gas temperature sensor indicates an error (E_ats = 1)
- (d) The exhaust gas temperature sensor is not ready (B_atsb = 0)
- (e) Significant differences between the bank controller control variables were found (E_atrd = 1).

If the engine reaches the rich running limit $(B_lagf = 1)$ while exhaust gas temperature control is active $(B_atr = 1)$, a further enrichment attempt is prohibited by the control scheme $(B_atrsp = 1)$. The current value of the controller output is recorded. However, an enrichment reduction is allowed.

ATRPI2: Exhaust Gas Temperature Proportional/Integral Control for Cylinder Bank 1

The exhaust gas temperature controller is configured as a PI controller, because the "delta lambda controller" intervenes additively. ATRP and ATRI are applied amplification factors for the P and I components. When control is switched off ($B_atr = 0$) the controller output is set to zero. The integral component in this case is set to equal the negative value of the proportional component (dlatri = -dlatrp), so it follows that the sum is zero. The controller output (dlatr) will be limited to "rich" by the applicable limit DLATRMN. In this case, the integrator is suspended. The exhaust gas temperature tabg falls below the threshold temperature TABGSS or the control is turned off ($B_atr = 0$), the integrator will be released. When the controller is inhibited ($B_atrsp = 1$), the last value of controller output (dlatr) is recorded. The integral part is calculated so that the controller output is constant even when a control error remains (dlatri = dlatr - dlatrp).

ATRERB2: Enabling Exhaust Gas Temperature Control for Cylinder Bank 2

As per cylinder bank 1

ATRPI2: Exhaust Gas Temperature Proportional/Integral Control for Cylinder Bank 2

As per cylinder bank 1

ATRNL: Limp Mode for Exhaust Gas Temperature Control

In the event that an exhaust gas temperature sensor fails or is not ready, a limp mode variable (dlatrnl) is provided. The delta lambda target of interest for the limp mode is in the characteristic DLATRNL.

ATRKO: Control Output Coordination

If there is no error in the exhaust gas temperature sensors before, the controller outputs dlatr or dlatr2 through the function outputs dlamatr or dlamatr2 are transferred to lambda coordination. Once a sensor failure ($E_ats = 1$ or $E_ats2 = 1$) or the sensors are not operational ($B_atsb = 0$), or significant bank differences of the controller variables ($E_atrd = 1$ or $E_atrd2 = 1$) is detected, the ATR-control range ($B_atrb = 1$) the limp mode variable dlatrnl are transferred to both banks of lambda coordination.

ATR 1.60 Application Notes

Requirements: - Application of lambda control

<u>Applications Tools:</u> VS100

Preassignment of the Parameters: Erkennung Regelbereich:

- Codeword CATR = 01 (hexadecimal) = 1 (decimal) enable control

- Minimum load for exhaust gas temperature control map KFRLATR (x: engine speed/rpm, y: intake air temperature/°C, z:%)

2000 3000 4000 5000 6000

Enable exhaust gas temperature control for cylinder bank 1/bank 2:

- Threshold exhaust gas temperature for exhaust gas temperature control: TABGSS(2) = 1000°C

- Desired AFR upper limit for switching off exhaust gas temperature control: LATRO = 16.0

Exhaust gas temperature control for cylinder bank 1/bank 2:

- Threshold exhaust gas temperature for exhaust gas temperature control: TABGSS(2) = 1000°C
- Gain factor for proportional component exhaust gas temperature PI control: ATRP = 0.005 I/K
- Gain factor for integral component for exhaust gas temperature PI control: ATRI = 0.0005 I/(s \times K)
- Lower limit for exhaust gas temperature control: DLATRMN = -0.3

Exhaust gas temperature control limp mode:

- Delta lambda exhaust gas temperature control limp mode:

Engine speed/rpm	2000	3000	4000	5000	6000
DLATRNL	-0.10	-0.13	-0.17	-0.20	-0.23

Procedure:

Switching off the Function:

To prohibit exhaust gas temperature control set codeword CATR [Bit 0] equal to 0.

Affected Functions:

%LAMKO through dlamatr_w and dlamatr2_w

Parameter ATRI ATRP CATR DLATRMN DLATRNLN KFRLATR LATRO SY_STERVK TABGSS TABGSS2	Description Gain factor (integral component), exhaust gas temperature control Gain factor (proportional component), exhaust gas temperature control Configuration byte, exhaust gas temperature control Lower limit for exhaust gas temperature control Delta lambda in limp mode, exhaust gas temperature control Minimum load for exhaust gas temperature control Desired lambda upper limit, exhaust gas temperature control System constant condition flag for stereo pre-cat Exhaust gas temperature threshold for exhaust gas temperature control Exhaust gas temperature threshold, exhaust gas temperature control
Variable	Description
Variable B_ATR B_ATR2 B_ATRB B_ATRNL BATRSP B_ATRSP2 B_ATSB B_BEVAB B_BEVAB2 B_LALGF B_LALGF2 B STEND DLAMATR2_W DLATR2_W DLATR2_W	Description Condition flag for exhaust gas temperature control Condition flag for exhaust gas temperature control, cylinder bank 2 Condition flag for valid operating range, exhaust gas temperature control Condition flag for limp mode in exhaust gas temperature control Condition flag for exhaust gas temperature control disabled Condition flag for exhaust gas temperature control disabled Condition flag for exhaust gas temperature sensor ready Condition flag for fuel injector cut-off in cylinder bank 1 Condition flag for fuel injector cut-off in cylinder bank 2 Condition flag for fuel injector cut-off in cylinder bank 2 Condition flag for "lambda rich" limit active Condition flag for end of start conditions reached Delta lambda for exhaust gas temperature control, cylinder bank 2 Delta lambda for exhaust gas temperature control Delta lambda for exhaust gas temperature control, cylinder bank 2
DLATRI_W DLATRNL_W DLATRP2_W DLATRP W	Delta lambda in limp mode, exhaust gas temperature PI control Proportional component, exhaust gas temperature PI control, cylinder bank 2 Proportional component, exhaust gas temperature PI control

ATR 1.60 (Exhaust Gas Temperature Control)

DLATR_W	Delta lambda, exhaust gas temperature control
E_ATRD	Error flag: cylinder bank difference, exhaust gas temperature control
E_ATRD2	Error flag: cylinder bank difference, exhaust gas temperature control bank 2
E_ATS	Error flag: exhaust gas temperature sensor
E_ATS2	Error flag: exhaust gas temperature sensor, cylinder bank 2
LAMVOA2_W	Lambda pilot control without additive parts, cylinder bank 2
LAMVOA_W	Lambda pilot control without additive parts
NMOT	Engine speed
RL	Relative cylinder charge
RLATR	Load threshold for exhaust gas temperature control
TABG2_W	Exhaust gas temperature, cylinder bank 2
TABG_W	Exhaust gas temperature
TANS	Intake air temperature

BGSRM 17.10 Function Description

See the funktionsrahmen for the following diagrams:bgsrm-bgsrmFunction overviewbgsrm-bpsbgsrm-brlCalculation of the fresh and residual gas filling of the cylindersbgsrm-brfgesCalculating total cylinder chargebgsrm-bpirgbgsrm-pirgbgsrm-pirgbgsrm-rlsu

Function Description

The aim of the function:

The intake manifold model calculates the fresh gas filling of the combustion chamber from the air mass flow into the intake manifold.

Description:

An integrator emulates the storage characteristic of the intake manifold. It integrates, with the integrator coefficient KISRM, the relative difference between the inlet relative fill rlroh_w and the outlet relative air fill rl_w and supplies, after correction with the intake manifold temperature via ftsr and the standard pressure 1013 mbar, the fresh gas partial pressure in the intake manifold.

This integrator is calculated in real time. This makes it possible to describe the increase in pumping capacity with increasing engine speed without parameter change.

External exhaust gas recirculation is taken into account by adding the partial pressure of residual gas psagr_w in the intake manifold (see function BGAGR). As a result there is now a measurable quantity available, namely the intake manifold pressure ps_w, that can be used to compare with the model in the application phase.

The partial pressure of fresh gas in the intake manifold is now limited to a maximum value such that the overall pressure in the intake manifold ps_w does not increase beyond psmx_w, and also so that in the MAF meter reverse flow range, the intake manifold pressure never oscillates to large values; thus the fresh gas filling rl_w is indirectly limited by the intake manifold pressure model.

During load variations-UT, an approximate pressure balance exists between the intake manifold and cylinder which means that there is also a linear relationship between cylinder filling and the intake manifold. Additionally, there is still the residual gas in the cylinder which must be described, since exhaust gas remains in the cylinder after the end of the exhaust event and a part of this residual gas temporarily flows back into the intake manifold, but is then sucked in again.

The camshaft overlap angle wnwue is characteristic of the crank angle, during which both inlet and also exhaust valves are opened and is thus a (nonlinear) measure of the average cross-sectional area, which represents an available flow of exhaust gas from the exhaust tract into the intake manifold. Since the exhaust gas mass throughput also depends on the transit time, engine speed must also be used as an input variable to describe the effect.

Hence it follows that there is a linear rl_w - ps_w connection with offset KFPIRG (as a function of engine speed and camshaft overlap angle) and gradient KFPSURL (as a function of engine speed and camshaft overlap angle).

Since the residual gas component pirg and the gradient fupsrl are dependent on the intake manifold changeover, the intake manifold position switches over as required by the corresponding map. To obtain fupsrl no abrupt changes in the residual gas component pirg and the gradient fupsrl, they are filtered by a lowpass filter with time constant ZVTPRGSU.

Exhaust gas pressure decreases with decreasing ambient pressure and therefore the residual gas component in the cylinder, therefore the offset pirg_w corrected with the altitude factor fho_w. For the gradient fupsrl_w, a correction takes place according to the combustion chamber temperature ftbr.

With external exhaust gas recirculation, the conversion of intake manifold pressure to cylinder filling supplies all of the air filling the cylinder rfges_w including the EGR component. The component part of residual gas filling of the cylinders rfagr_w is obtained from the ratio of residual gas partial pressures in the intake manifold psagr_w to intake manifold pressure ps_w. The remaining filling part describes the fresh gas filling of the cylinders rl_w.

BGSRM 17.10 (Cylinder Charge Detection, Intake Manifold Model)

rl_w is the key parameter for incorporating all the filling-dependent effects and is the basic variable for pilot control of the fuel injection.

The extracted fresh gas mass flow rate mlw is obtained from the product of rl_w, speed and the conversion factor umsrln_w.

In contrast to previous tl-filter applications, the time constant of the relative load-transient effect is no longer explicitly applied via a characteristic curve, but this is implicit in the equilibrium of the intake manifold pressure models and the (predictable) value of KISRM. The value for KISRM is also switched depending on the intake manifold setting.

Application Notes

Requirements:

"- Conversion for air mass flow rate applied in rl (see function BGMSZS)"

"- Applied temperature compensation (see function BGTEMPK)"

Application tools:

for intake manifold pressure model equilibrium conditions:

"- Slow manifold pressure measurement in the collector'

dynamic comparison of intake manifold pressure with the intake manifold pressure model for measurement:

"- Throttle plate actuator"

"- Fast-measurement in the intake manifold collector (sensor time constant <10 ms, sampling rate <4 ms)"

Default values for the parameters:

"- Maximum allowable ratio manifold pressure/pressure before throttle"

FPVMXN = 1.20

"- In the cylinder internal residual gas partial pressure KFPRG"

50 mbar at the smallest wnwue, 300 mbar at largest wnwue small, with increasing engine speed is less

"- Gradient rl (ps) characteristic KFURL"

0.105%/mbar at the smallest wnwue, 0.142%/mbar at the largest wnwue, with increasing speed is less

"- Gradient of intake manifold pressure integrator KISRM"

 $KISRM = zkorr/[(Vs/VH) \times z]$

where

z is the number of cylinders (4 - 8)

VH is the total stroke volume of all the cylinders (i.e. engine displacement)

Vs is the intake volume from throttle plate through to the inlet valves, typically 1.5 to 3.0 x VH

zkorr is a correction factor for numerical stability: 0.90 when z = 4, 0.92 when z = 5, 0.95 when z = 6 or 1.00 when z > 6.

e.g. if z = 4 with Vs/VH = 2.2, KISRM = 0.1023

Switching off the Function:

"- From the intake manifold dynamics emulation: KISRM = 1.0"

Procedure:

"- Steady state for each engine speed nmot and camshaft overlap angle wnwue"

At about 4 to 5 points of relative load rl, determine measured intake manifold pressure, calculate a straight line through these points, then determine the intake manifold pressure offset KFPRG (at rl = 0) and KFURL from the gradient of the line.

"- After steady-state application of the intake manifold pressure model takes place, throttle plate jumps should be (e.g. rl = 26% to 60%)"

and comparing intake manifold pressures measured by the fast intake manifold pressure sensor with intake manifold pressures emulated in the ECU ps_w, the dynamic correctness of the air-filling model must be

proven. Existing small deviations can possibly be corrected through minor changes in KISRM; but the intake manifold pressure dynamics and thus the rl-dynamics should be described satisfactorily with the calculated value of KISRM.

Affected functions:

All functions that use the charge signal rl, almost all!

Abbreviations

Parameter	Description
CWBGSRM	Code word in BGSRM
FPVMXN2	Maximum pressure ratio factor with secondary load signal
KFPBRK	Correction factor for the combustion chamber pressure
KFPBRKNW	Correction factor for the combustion chamber pressure during active camshaft control
KFPRG	Internal exhaust gas partial pressure dependent on adjustable camshaft when sumode = 0
KFPRGSU	Internal exhaust gas partial pressure dependent on adjustable camshaft when sumode = 1
KFPRG2SU	Internal exhaust gas partial pressure dependent on adjustable camshaft when sumode = 2
KFPRG3SU	Internal exhaust gas partial pressure dependent on adjustable camshaft when sumode = 3
KFURL	Conversion factor from ps to rl dependent on adjustable can shaft when sumode = 0
KFURLSU	Conversion factor from ps to rl dependent on adjustable camshaft when sumode = 1
KEURI 2SU	Conversion factor from ps to il dependent on adjustable camshaft when sumode = 2
KEURI 3SU	Conversion factor from ps to il dependent on adjustable camshaft when sumode = 3
KISRM	Integrator coefficient for intake manifold model (dynamic)
KISRMSU	Integrator coefficient for intake manifold model when sumode = 1
KISRM2SI I	Integrator coefficient for intake manifold model when sumode = 1
KISRM3SU	Integrator coefficient for intake manifold model when sumode = 2
PRGNM	Internal exhaust has martial pressure dependent on engine speed
	Internal exhaust gas partial pressure dependent on engine speed when there is intake manifold
PRGSUNM	changeover flap switching (1 flap)
	Internal exhaust as partial pressure dependent on engine speed when there is intake manifold
PRG2SUNM	change over the switching (2 flaps)
	Internal exhaust as partial pressure dependent on engine speed when there is intake manifold
PRG3SUNM	change over the switching (1, 2 flage)
EV NIME	Sustain constrait, company of the particul parts is part of continuously variable
	System constant. camsnait control. none, binary of continuously variable
UKLINIVI	Conversion factor from ps to il dependent on engine speed, nino_w
URLSUNM	monified abargeouser flag awitching (1 flag)
	Conversion feater from paster il denomentarion engine anead, amet www.engthere.is inteles
URL2SUNM	conversion factor from ps to in dependent on engine speed, ninot_w when there is intake
	manifold changeover hap switching (2 haps)
URL3SUNM	Conversion factor from ps to il dependent on engine speed, nmot_w when there is intake
	manifold changeover flap switching (1+2 flaps)
ZVIPRGSU	Low pass filter time constant for intake manifold flap dynamic
AGRR	Exhaust gas recirculation rate
AGRR W	Exhaust gas recirculation rate (word)
B_HFM	Condition flag: MAF sensor measurement range
B_MXRLROH	Condition flag: maximum range for rIroh is fulfilled
B_NWS	Condition flag: camshaft control
B_NWVS	Condition flag: camshaft adjustment (binary or continuous) present
B_SUMOD1	Condition flag: intake manifold changeover sumode = 1
B_SUMOD2	Condition flag: intake manifold changeover sumode = 2
B_SUMOD3	Condition flag: intake manifold changeover sumode = 3
DPSFG W	Delta-fresh gas partial pressure in the intake manifold
DRL_W	Delta cylinder charge (Word)
FHO_W	Correction factor for altitude (word)
FNWUE	Weighting factor camshaft overlap angle (inlet)
FPBRKDS_W	Factor for determining the combustion chamber pressure
FTBR_W	Factor for correcting the combustion chamber temperature
FTSR	Correction factor for the intake manifold air temperature
FUPSRL_W	Conversion factor system-related pressure on filling (16-bit)
FVISRM_W	Intake manifold integrator gain factor
ML	Air mass flow
ML_W	Air mass flow, filtered (Word)
NMOT W	Engine speed
PBR_W	Calculated combustion chamber pressure
PIRGRO_W	Raw value of residual gas partial pressure for internal exhaust gas recirculation (16-Bit)
PIRG_W	Residual gas partial pressure for internal exhaust gas recirculation (16-Bit)
PPG W	Raw value of residual gas partial pressure for internal exhaust gas recirculation when there is no
	intake manifold changeover flap switching
PRGSU_W	Raw value of residual gas partial pressure for internal exhaust gas recirculation when there is

BGSRM 17.10 (Cylinder Charge Detection, Intake Manifold Model)

	intake manifold changeover flap switching (1 flap)
	Raw value of residual gas partial pressure for internal exhaust gas recirculation when there is
FKG230_W	intake manifold changeover flap switching (2 flaps)
PRG3SUL W	Raw value of residual gas partial pressure for internal exhaust gas recirculation when there is
110000_11	intake manifold changeover flap switching (1+2 flaps)
PSAGR_W	Partial pressure through external residual gas (residual air + inert gas)
PSFG_W	Fresh gas partial pressure in the intake manifold (word)
PSMX_W	Intake manifold maximum pressure limit for modelling intake manifold pressure
PSRLRO_W	Raw value for system-related conversion factor pressure from cylinder charge
PS_W	Manifold absolute pressure, MAP (Word)
PU_W	Ambient pressure
PVDKDS_W	Pressure before the throttle plate from the pressure sensor (word)
RFAGR_W	Relative cylinder charge from exhaust gas recirculation (word)
RFGES_W	otal relative cylinder charge (inclusive of exhaust gas recirculation) 16-Bit
RL	Relative air charge
RLROH W	Relative air charge: raw value from the load sensor (word)
RL_W	Relative air charge (word)
SUMODE	Status of the intake manifold switching
UMSRLN_W	Conversion factor for cylinder charge in mass flow
URL_W	Factor for converting pressure from cylinder charge at the default position of the intake manifold flap
URLSU_W	Factor for converting pressure from cylinder charge when there is intake manifold changeover flap switching (1 flap)
URI 2SU W	Factor for converting pressure from cylinder charge when there is intake manifold changeover
	flap switching (2 flaps)
URL3SU_W	Factor for converting pressure from cylinder charge when there is intake manifold changeover flap switching (1+2 flaps)
WNWISA_W	Actual exhaust camshaft angle
WNWSRM_W WNWUE W	Choice between wnwue and wnwisa for addressing the map for PIRG and fupsrl Camshaft overlap angle

See the *funktionsrahmen* for the following diagrams:

fuedk-fuedk fuedk-bripssol	FUEDK overview
fuedk-umpspi	UMPSPI: calculation of reference pressure upstream of the throttle
fuedk-bmldkns	BMLDKNS: normalised target air mass flow at throttle
fuedk-bwdksgv	BWDKSGV: target throttle angle
fuedk-filter	FILTER: median-filter
fuedk-wdksugdt	WDKSUGDT: difference of target throttle angle compared to 95% charge
	(turbocharged engine)
fuedk-wdksugds	WDKSUGDS: difference of target throttle angle compared to 95% charge (normally- aspirated engine)
fuedk-wdksgv	WDKSGV: throttle angle
fuedk-bde-wdksgv	WDKSGV: petrol direct injection throttle angle
fuedk-wdkappl	WDKAPPL: calibration interface
fuedk-nachlauf	NACHLAUF: calculation of target throttle angle when SKI15 = off
fuedk-init	INIT: initialization of function

FUEDK 21.90 Function Description

The purpose of this function is to calculate the target throttle plate angles for either a turbocharged or a normally-aspirated engine with an intake manifold (lambda = 1 mode), or direct injection (also lambda > 1). The control is via the system constants SY_TURBO and SY_BDE. The main input variables are the target relative cylinder charge and the required correction from cylinder charge control. Various other signals, such as correction factors for pressure and temperature or information about the fuel tank breather and exhaust gas recirculation are taken from the intake manifold model of cylinder charge detection or the target value for exhaust gas recirculation (in direct injection mode). For these reasons, there is a close connection between calculation of the target throttle plate angle and cylinder charge detection.

Sub-function BRLPSSOL: Calculation of the target intake manifold pressure (pssol_w) and correction of target fresh air charge upstream of the throttle plate (rlfgks_w)

In petrol direct injection engines, the target relative cylinder charge rlsol_w is reduced by the relative air charge from external and internal exhaust gas recirculation. In the case of engines with fuel injection to the intake manifold (lambda = 1) no air is contained in the internally or externally recirculated exhaust gas. The relative residual gas charge = 0 and is therefore not taken into account. A comparison between actual cylinder charge (rl w) and target cylinder charge (rlsol w) is made via the variable drlfue from the function FUEREG (cylinder charge control). The variable rlfgks w represents the proportion of fresh air that flows through the throttle plate or the fuel tank breather to the engine. The target intake manifold pressure for direct injection engines is calculated from the target fresh air charge through the throttle plate and fuel tank breather and the total charge (air and inert gas) from the residual gas (i.e. internal and external exhaust gas recirculation) together. The total charge corresponding to the intake manifold pressure is calculated with the conversion factor fupsrl w. For engines with fuel injection into the intake manifold, the target relative cylinder charge rlsol_w is increased by the relative charge from the external exhaust gas recirculation feed. The total charge corresponding to the intake manifold pressure is calculated with the conversion factor fupsrl w. Correcting with the internal exhaust gas recirculation partial pressure (pirg_w) gives the target intake manifold pressure pssol_w. Additionally, in direct injection engines, the correction of the internal residual gases (ofpbrint w) is still added and then pssol w is obtained.

Sub-function UMSPI: Calculation of the target reference pressures upstream of the throttle plate for a turbocharged engine (pvdkr w):

Turbocharged engine:

Target reference pressure pvdkr_w see the following description

Air density correction factor frhodkr_w = ftvdk \times pvdkr_w \div 1013 mbar.

The target reference pressure for the pressure upstream of the throttle plate ($pvdkr_w$) for a turbocharged engine is formed from the maximum range of ambient pressure (pu_w) and the target boost pressure ($plsol_w$) or the actual pressure upstream of the throttle plate ($pvdk_w$). The target boost pressure is given by $pssol_w \div vpsspls_w$, whereby $vpsspls_w$ is the required pressure ratio from the boost pressure control. When $vpsspls_w > 0.95$, the throttle plate is linearly actuated, with boost pressure regulation active, in order to minimise the pressure drop at the throttle plate (see sub-function WDKSUGDT). The air mass dependent characteristic KLDPDK takes the pressure drop across the throttle plate into account. In so doing, this gives a larger value for the target boost pressure than the actual boost pressure being implemented in the boost

FUEDK 21.90 (Cylinder Charge Control (Calculating Target Throttle Angle))

pressure control. The actual pressure can be ramped up towards the target pressure via the characteristic FUEPMLD. When the predicated boost pressure difference pdpld exceeds the threshold DPUPS, then a switch is made to the actual pressure pvdk_w, because this condition represents a boost pressure error (B_ldrugd = false). In the transition from ambient pressure to dev basic boost pressure, the actual boost pressure is filtered with the low-pass filter, because pressure pulsations will be experienced in this range because of non-clean waste-gate closure.

Sub-function BMLDKNS: Calculation of the normalised target air mass flows through the throttle plate (msndkoos_w)

The target air mass flow mlsol_w is calculated by multiplying the corrected target cylinder charge rlfgks_w by umsrln_w. Since the engine cylinder charge at start is obtained from the intake manifold, initially, no throttle opening would be required (umsrln_w = KUMSRL \times nmot = 0). A minimum air flow through the throttle is predetermined by the threshold KUMSRL \times NRLMN so that the throttle does not close at the start and then open when the engine picks up speed. The threshold NRLMN is set to 400 rpm since that is assumed to be the engine speed at start. The threshold NRLMNLLR is disabled so that the throttle will be closed during a speed drop, for instance when starting up.

The target air mass flow is reduced by the air mass flow which is directed into the intake manifold through the fuel tank breather (mste) since this amount must be made up via the throttle. The normalized air mass flow through the throttle (msndks_w) is calculated by dividing the target air mass flow through the throttle (msdks_w) by the corrected density, KLAF. The throttle valve actuator air bleed (msndko_w) will still be subtracted from this air mass flow via an adaptation in the function BGMSZS to obtain the normalized air mass that will flow through the throttle (msndkoos_w).

The discharge characteristic, KLAF, is addressed with the target pressure ratio psspvdkb_w. This target pressure ratio comprises the minimum of psspvdk_w = pssol_w \div pvdkr_w (turbo) or psspvdk_w = pssol_w \div pvdk_w (normally-aspirated engine) and PSPVDKUG together. This means that the target throttle angle only up to the unrestricted range, psspvdkb_w = 0.95 = PSPVDKUG, is calculated via KLAF. The remaining 5% is calculated in the sub-function WDKSUGDS for a normally-aspirated engine and in the sub-function WDKSUGDT for a turbocharged engine. If psspvdk_w > PSPVDKUG, condition flag B_klafbg will be set indicating that the characteristic KLAF is limited.

Sub-function BWDKSGV: Target throttle angle (wdksgv_w)

In this sub-function, the target angle (wdksgv_w) for controlling the throttle plate is calculated from the normalized target air mass (msndkoos_w). Up to the throttle angle for unrestricted operation wdkugd_w (output from the speed-dependent characteristic WDKUGDN from the function %BGMSZS) the target angle is determined via the map KFWDKMSN. This is the inverse map of KFMSNWDK (from the function %BGMSZS) and is calibrated to the built-in throttle actuator. If the calculated value of the normalized target air mass flow from KFWDKMSN is greater than the angle wdkugd_w, then the condition for unrestricted operating B_ugds = true.

If the target pressure ratio is greater than 0.95, the numeric basic stability of the normalized air mass flow and thus the target throttle angle can no longer be determined via the discharge characteristic KLAF. For the rest of the target throttle angle range beyond wdkugd_w to 100% for both a normally-aspirated and turbocharged engine, a different residual angle dwdksus_w or dwdksut_w is implemented. This residual value in the unrestricted range (naturally-aspirated: B dwdksus = true and turbocharged: B fkmsdks = true) is added to wdkugd_w. If applicable, the target throttle angle is limited by the maximum allowable target throttle angle KFWDKSMX and made available as wdksgv_w. This can be used for power reduction or attenuation of induction noise. To extend the life of the throttle-adjustment actuator, the normalized air mass flow (msndkoos_w) is smoothed via a median filter with small changes in rlsol_w in the sub-function FILTER. If the delta rlsol (drlsolmf = abs (rlsol_w - rlsol (t - 40 ms)) is less than the threshold DRLSOLMF, which means very small changes in the target torque, the filter is active (B mfact = true). The actual value of msndkoos w is cached in a five-value capacity input filter buffer. The values are stored in decreasing values in a five-value capacity output filter buffer. If the old filter value mlwdknf_w is not within the maximum and minimum value of the output filter buffers, it will be centered on the mean value of these buffers. Otherwise, mlwdknf w is not changed. If the threshold drlsolmf w > DRLSOLMF, then the filter output value mlwdknf w is set directly to the filter input value msndkoos w. In addition, the filter input value is transferred to the filter input buffer.

For special cases, for example start and warm-up conditions, it is necessary to predefine a torque calculation independently of the throttle angle. For this purpose, the input wdksom_w is used when B_wdksom is active.

FUEDK 21.90 (Cylinder Charge Control (Calculating Target Throttle Angle))

With the switch B_tfwdksom, the filter time constant tfwdksom can be switched on. The low pass filter is required during the transition from "start angle" to "torque-based" operation. For engines with fuel injection to the intake manifold, the filter can also be switched on during the operation via the code word CWFUEDK (6 bits) with the variable time constant tfwdks_w. If the condition B_fkmsdks (B_ugds or B_klafbg for normally-aspirated engine and B_fkmsdks for a turbocharged enginer) is set, the charge control is disabled (see Section %FUEREG) and the alignment between MAF meter and throttle-based charge detection (fkmsdk) in the function BGMSZS%.

Turbocharged Engine: Sub-function WDKSUGDT

Because cylinder charge in the unrestricted region for a turbocharged engine is achieved via the boost pressure control, the throttle should be completely open in this region to avoid throttling losses. For this purpose, in the boost pressure control, the pressure ratio vpsspls_w is defined as target manifold pressure \div ambient pressure. If vpsspls_w > 0.95, i.e. vpsspls_w > PSPVDKUG, so begins the unrestricted area. The throttle plate residual value dwdksumx_w = difference between the unrestricted target angle wdkugd_w and 100% which is linearly scaled by the ratio $(1 - vpsspls_w) \div (1 - PSPVDKUG)$. The value for PSPVDKUG is 0.95 (see function BGMSZS). If the throttle angle is controlled by the actual manifold pressure (CWFUEDK Bit 7 = true), the upper value is enabled only when the calculated target throttle angle from the torque structure is greater than the unrestricted angle. The angle can be unrestricted through tolerances of the MAF meter and pressure sensors, even if a demand of vpsspls_w = 1 is still greater than wdksbugd_w. Therefore, this tolerance can be applied in DWDKUGD. Then the upper value is enabled via a pressure ratio vpsspls_w > VPSSPLSWDK already at wdksbugd (angle calculated from the torque structure) > wdkugd minus DWDKUGD.

With active throttle plate residual value, the bit B_fkmsdks is set, which is either when B_klafbg is set or vpsspls_w \ge PSPVDKUG or when CWFUEDK bit 7 = true only dependent on B_klafbg.

Normally-Aspirated Engine: Sub-function WDKSUGDS

Here a so-called pedal-crossover is introduced: Bit 4 of CWFUEDK = false: If the target pressure ratio psspvdk_w > PSPVDKUG (i.e. B_klafbg = true) or if B_ugds = true, then the pedal-crossover begins (B_dwdksus = true). mrfa_w is frozen at the beginning of the crossovers in mrfabug_w.

The throttle plate residual value dwdksumx_w (= difference between the unrestricted target angle wdkugd_w and the maximum permissible target angle from the map KFWDKSMN) is linearly scaled through the ratio for the pedal crossover between mrfabugd_w and mrfamx_w thus:

 $[mrfa_w - min(100\%, mrfabugd)] \div [mrfamx_w - min(100\%, mrfabugd)]$

whenever B_dwdksus = true.

The value dwdksus_w is added to wdkugd_w and as the target angle wdksvin_w provided. wdksgv_w can be maximum WDKSMX. The end of the pedal-crossovers is reached when, for example, mrfa_w is once more smaller then mrfabugd_w or [milsol_w < FMIUGDS \times mifafu_w] (0.95 \times mifafu_w) or, for vehicles with continuously-variable transmissions (CVT), when B_mgbget = true.

For positive load changes corresponding to fast throttle-opening, a large increase of torque via the air path (mifal) is predetermined by the driver's requested torque calculation function. This large increase is also conveyed to the throttle-side so that the unrestricted range is reached via the pressure ratio psspvdk. If the corresponding driver's requested torque were to be saved, then this torque would be too small because it contains this large increase. Therefore, the saving is prevented via B_lsd until this dynamic action is once again reduced.

The map MRFARUGDN (reset threshold for linear pedal travel in the unrestricted throttle region) prevents the value 0 being stored in mrfabugd_w during startup when mrfa_w and psspvdk_w = 0 and > 0.95. This prevents pedal crossover that is activated when wped is in the region of 0.

Bit 4 CWFUEDK = true:

The pedal crossover does not depend on mrfabugd_w calculation but depends on the characteristic MRFARUGDN. Whether the pedal crossover is switched on or off depends on the same conditions as in bit 4 of CWFUEDK = false.

Sub-function WDKAPPL: Applications interface

If the applications interface is enabled, normal calculation of target throttle angles (which is the function of the torque interface) is disabled (via constant CWMDAPP). Instead, the target throttle angle depends only on the pedal value, or is even set to be constant. When the engine speed = 0 rpm, the target throttle angle depends directly on the pedal position (wped). Thus, for example in the workshop, a movement of the throttle valve actuator can be achieved via the throttle pedal. Via the system constant SY_TWDKS, a sub-program can be incorporated, which enables the tester to control the throttle by a predetermined angle cvwdk. In so doing, the tester must assign the target angle cvwdk and set the bit in B_cwdk.

When using this feature you must ensure that no acceleration of the vehicle takes place, e.g. through examination of brake switch, clutch switch, etc. Ensure that engine and vehicle speed = 0!

When the map FPWDKAPP is switched on, then when evtmod < EVTMODKMNDK an offset WDKSOFS is added to the curve. This prevents the wrong throttle learning, for example by freezing. With nmot_w = 0 and ignition on, the target value of the throttle angle should correspond to the emergency air point.

<u>Subfunction NACHLAUF: Calculation of the target throttle angles for delayed accessory power only when</u> <u>SY_UBR = 1 (main relay installed) included.</u>

For delayed accessory power, a throttle angle is determined independently of the torque structure. This angle wdksom_w is defined in the function WDKSOM. For systems with a built-in main relay, the throttle actuator also supplies the ECU-delayed accessory power with power and therefore this angle is set by the throttle actuator. This ensures a quieter engine output.

FUEDK 21.90 Application Notes

Normally-aspirated and Turbocharged engines: KLAF: see cylinder charge detection KFWDKMSN: the inverse of KFMSNWDK KUMSRL: see cylinder charge detection

CWFUEDK bit allocation:

Bit 0: normally-aspirated engine, fkmsdk-correction via pedal upper travel

Bit 1: not used in this FDEF.

Bit 2: for start packet: if throttle angle from the torque structure > throttle angle from start packet, there is no filtering of tfwdksom

IT IS RECOMMENDED TO SET THIS BIT TO FALSE!

Bit 3: not used in this FDEF.

Bit 4: normally-aspirated engine, via pedal upper travel dwdksus_w is calculated via mrfabugd_w or mrfaugd: IT IS RECOMMENDED TO SET THIS BIT TO FALSE!

Bit 5: B_ldrugd can only be set independently of B_llrein with a turbocharged engine

Bit 6: only for non-direct injection engine: low-pass filter before wdksgv_w is enabled either just at start or always

Bit 7: KLAF is calculated by filtered actual intake manifold pressure (for turbo) ÷ target intake manifold pressure (for normally-aspirated engine)

CWFUEDK=64 Bit 0 = false: functionality as per module FUEDK 18.20

Bit 2 = false: functionality as per module FUEDK 21.50

Bit 4 = false: functionality as per module FUEDK 18.20

- Bit 5 = false: functionality as per module FUEDK 18.20
- Bit 6 = true: as per module FUEDK 18.20, when Bit 6 = false \rightarrow run time reduction
- Bit 7 = true: for turbo: calculation from KLAF with filtered actual intake manifold pressure = false: for normally-aspirated engines: calculation from KLAF with target intake manifold pressure as previously

CWRLAPPL: only for dynamometer (switching from pssol_w with and without influence from charge control)

EVTMODMNDK = 5°C

WDKSOFS = 5% (Emergency air point minus one value of KLFPWDKAPP) thus throttle target value when lambda = 1 and engine speed = 0 corresponds to the emergency air point.

FPWDKAPP

wped_w/% 1.5 6.25 11.0 15.63 23.43 31.25 39.0 46.87 54.69 62.5 70.3 78.13 82.86 85.94 89.84 93.75

FUEDK 21.90 (Cylinder Charge Control (Calculating Target Throttle Angle))

wdksv_w/% 1.7 7.1 11.16 15.25 20.0 31.0 39.0 47.0 55.0 62.0 70.0 78.0 82.0 86.0 90.0 99.9

WDKSAPP 2%

TWDKSV: pspvmin_w 0.990 0.992 0.996 0.998 1.00 1.02 0.01 0.10 0.15 0.20 0.25 0.0

NMOTCVWDK = 2000 rpm

NRLMN: 400 rpm (defined via umsrln_w, the throttle opening in start). The throttle opening is limited by wdkugd_w.

NRLMNLLR: 100 rpm below idle speed (700 rpm) ZKPSFIL = 0.02 s

KFWDKSMX: Engine speed sample points are selected as per WDKUGDN. It is important to note that for the throttle angle limit to reduce power, the sample points in the reduction range may be more closely distributed.

Upper sample point: the uppermost sample point for the altitude is selected so that it corresponds to the altitude at which the power reduction occurs. In the power reduction region, KFWDKSMX is less than 100% such that the desired maximum engine performance is thereby made through the restriction.

The lowest sample point is selected so that it corresponds to the altitude at which the lowest air density yields the natural power reduction to the desired performance standard. As a reference point, it is assumed that an altitude gain of 1000 m brings about a 10% power reduction (delta fho_w = -0.1). This sample point is recorded over the entire speed range KFWDKSMX = 100%.

Engine speed: 240, 760, 1000, 1520, 2000, 2520, 3000, 3520, 4000, 6000 rpm fho_w: 0.8, 0.9, 1.0

Values: KFWDKSMX = $100\% \rightarrow$ angle limit is not active.

Determination of the activation threshold for the median filter:

1) Median-Filter switch-off: DRLSOLMF = 0;

Let the vehicle roll at idle to determine the maximum occurring drlsolmf_w. This is value 1.

Slowly pay out idling gas (low dynamics). The drlsolmf_w which occurs in this case determines value 2.

At idle, rotate the power steering to its end stop, The drlsolmf_w which occurs in this case detemines value 3.

Increase vehicle speed (accelerate under load with greater dynamics). The drlsolmf_w which occurs in this case determines value 4.

The threshold value DRLSOLMF is determined from the maximum of values 1 and 2 and the minimum of values 3 and 4.

It will lie in the mostly in value 4.

DRLSOLMF default value is: 2%

For the charge detection application on the engine dynamometer, speed or load sample points shall be reached automatically. The target specification in the function %MDFUE is achieved by specifying a constant rlsol or a target throttle pedal value. Thus, the predetermined rlsol will be implemented in a real rl with the same value, the charge control is used with a changed parameter set to balance rl - rlsol. This functionality is only effective if the system constant SY_RLAPP in the function PROKON is set to a value > 0. With bit 0 of CWRLAPPL, the functionality is then activated final. The link with the driving speed ensures that the balancing function can be activated only when the vehicle is stationary, or on the engine dynamometer.

Normally aspirated engine only: MRFABUMX = 100% MRFARUGDN (SNM12FEUB) nmot_w Values all at 80% FMIUGDS: 0.95

Turbocharged engine only:

FUEPMLD Iditv w 3 6 10 20 Value 0.999 0.8 0.2 0

ZPVDKR

DPUPS: \geq 250 mbar

DWDKUGD = 2% tolerance of wdkugd

KLDPDK: 0 mbar at all sample points

Application: to measure the pressure drop across the throttle plate, especially the magnitude of the air mass flow rate. From these 16 sample points, mlkge_w is determined and the associated pressure drop applied in the characteristic.

PLSOLAP: 0 mbar. In the applications phase, if a target boost pressure is predetermined, B_plsolap = Bit 5 of CWMDAPP is set to be true and the desired boost pressure is specified via PLSOLAP.

PSPVDKUG see function BGMSZS

When CWFUEDK Bit 7 = true: TFWDKSOF = 0.1275 s

VPSSPLSWDK = 0.995 From this pressure ratio, the throttle should be opened to wdkugd, when the throttle angle from the torque structure is equal to wdkugd - DWDKUGD (tolerance)

WDKSHYS = 2%

Parameter	Description
CWFUEDK	Codeword FUEDK
CWRLAPPL	Codeword default risol w during application phase
DPUPS	Pressure difference for changeover of reference pressure to the throttle plate
DRLSOLMF	Threshold delta risol for median filter
DWDKUGD	Delta to unrestricted throttle angle (tolerance)
EVTMODMNDK	No minimum temperature for the offset is added to throttle plate characteristic at engine speed = 0
FMIUGDS	Factor maximum torque for unrestricted operation
FPWDKAPP	Throttle plate characteristic dependent von throttle pedal only for the applications phase
FUEPMLD	Factor for smooth transition of averge pressure (reference pressure) for turbo
KFWDKMSN	Map for target throttle plate angle
KFWDKSMX	Maximum target throttle plate angle
KLAF	Air discharge characteristic
KLDPDK	Characteristic for pressure drop across throttle plate
KUMSRL	Conversion constant for mass flow in relative air charge
MRFABUMX	Maximum driver-target threshold for linear pedal travel in the unrestricted throttle range
MRFARUGDN	Reset threshold for linear pedal travel in the unrestricted throttle range
NMOTCVWDK	Maximum speed that is still allowed at the throttle plate angle specified by the tester
NRLMN	Minimum speed for calculating umsrln
NRLMNLLR	Minimum speed for calculating umsrln during idle
PLSOLAP	Application value for target boost pressure
PSPVDKUG	Ratio pspvdk unrestricted
SNM12FEUB	Sample point distribution for WDKSMX, WDKUGDN
SY_AGR	System constant: exhaust gas recirculation present
SY_BDE	System constant: Petrol Direct Injection
SY_CVT	System constant: CVT-transmission present
SY RLAPP	rlsol-control in applications phase possible
SY_TURBO	System constant: Turbocharger
SY_TWDKS	System constant: Default target throttle angle adjustment via the tester possible
SY_UBR	System constant: Voltage after main relay ubr exists
SY_VS	System constant: camshaft control: none, binary (on/off)
TFWDKSOF	Time for target throttle plate filtering
TWDKSV	Time constant for target throttle plate angle filtering
VPSSPLSWDK	Pressure ratio to enable the throttle crossover when throttle angle > unfiltered throttle angle threshold
WDKSAPP	Target throttle plate angle for application purposes
WDKSHYS	Throttle plate hysteresis threshold for activating/deactivating crossover

WDKSOFS Offset applied to target throttle angle at low temperature Time constant for filtering intake manifold pressure for KLAF calculation in FUEDK ZKPSFIL ZPVDKR Time constant for pvdkr-filtering Description Variable Actuator test DCPIDCM B CWDK **B_DWDKSUS** Delta target throttle plate angle from the start of the unrestricted range (normally-aspirated engine) active **B_EAGRNWS** Condition: Error in exhaust gas recirculation or camshaft \rightarrow exhaust gas recirculation-cylinder charge for switching to the actual value Integrator stop fkmsdk **B_FKMSDKS B FPWDKAP** Throttle control directly via the throttle pedal **B_KLAFBG** Input variable for KLAF is limited Condition: unrestricted, enable through boost pressure control **B** LDRUGD Condition: idle control active **B_LLREIN** B_LSD Condition: Positive load shock absorption active Condition: Median filter active **B_MFACT B MGBGET** Condition: Torque gradient limitation active **B** NMIN Condition: Underspeed: n < NMIN Condition: Speed > NSWO1 **B_NSWO1 B_PLSOLAP** Changeover: target boost pressure at the application target boost pressure **B** STEND Condition: end of start reached Time constant for filtering throttle plate angle without torque structure active B_TFWDKSOM Target throttle plate angle in the unrestricted range **B_UGDS** B_WDKAP Condition: throttle angle target value from application characteristic or in the start from start angle B_WDKSAP Throttle control via constant, Bit 1 has priority **B_WDKSOM** Target throttle plate angle without torque structure active Actuator test control value DCPIDCM CVWDK DPDK_W Pressure drop across throttle plate DRLFUE_W Load correction of cylinder charge control Delta target cylinder charge for median filter DRLSOLMF W DWDKSUMX_W Delta target throttle plate angle from the start of the unrestricted range to maximum Delta target throttle plate angle from the start of the unrestricted range (normally-aspirated engine) DWDKSUS_W DWDKSUT W Delta target throttle plate angle from the start of the unrestricted (turbocharged engine) **EVTMOD** Modelled intake valve temperature (temperature model) FHO_W Altitude correction factor (word) FKLAFS W Discharge factor (KLAF) for determining wdks FKMSDK W Correction factor mass flow next charge signal FPBRKDS_W Factor for determining the combustion chamber pressures Air-tight correction factor for corrected throtttle throughput (word) FRHODKR W Air-tight correction for throttle throughput as a factor of (intake temperature and altitude) 16 Bit FRHODK_W **FTVDK** Correction factor for temperature at the throttle plate FUEPMLD_W Factor for smooth transition of average pressure (reference pressure) at the turbo FUPSRL W Conversion factor of system related pressure on cylinder charge (16-bit) LDITV_W Boost pressure control: duty cycle from integral controller (word) MIFAFU_W Driver-requested torque for cylinder charge MILSOL_W Driver-requested torque for cylinder charge MLKGE_W Input to map KLDPDK MLSOL_W Target air mass flow MLWDKNF_W Filterted, normalised air mass flow for determining target throttle-plate angle ML W Filtered air mass flow (Word) MRFABUGD_W Relative driver-requested torque to the beginning of the unrestricted range MRFAMX W Relative driver-requested torque, maximum value MRFAUGD W Relative driver-requested torgue for upper pedal travel in the unrestricted region MRFA_W Relative driver-requested torque from vehicle speed limiter and throttle pedal MSDKS W Target air mass flow through the throttle mechanism MSNDKOOS W Normalised air mass flow for determining the target throttle plate angle Normalised bleed air mass flow through the throttle plate (word) MSNDKO W MSNDKS_W Normalised target air mass flow through the throttle mechanism Fuel tank breather mass flow into the intake manifold MSTE NMOT Engine speed NMOT W Engine speed PDPLD Predicated delta pressure (actual target overshoot) PIRGFUE_W Partial pressure of residual gas, internal exhaust gas recirculation (for FUEDK) PIRG_W Partial pressure of residual gas, internal exhaust gas recirculation (16-Bit) PLSOL Target boost pressure PLSOL_W Target boost pressure (word) PSFIL_W Filtered intake manifold pressure for KLAF-calculation in FUEDK PSPVDK W Quotient intake manifold pressure/pressure at the throttle plate (word) PSPVMIN_W Minimum selection from pspvdk and psspvdk PSRLFUE_W Conversion pressure from cylinder charge (for FUEDK)

PSSOL_W	Target intake manifold pressure
PSSPVDKB_W	Ratio of target intake manifold pressure to pressure at the throttle plate, restricted
PSSPVDK_W	Ratio of target intake manifold pressure to pressure at the throttle plate
PS W	Absolute intake manifold pressure (word)
PU_W	Ambient pressure
PVDKR_W	Reference pressure at the throttle plate
PVDK_W	Pressure at the throttle plate 16-Bit
RFAGR_W	Relative cylinder charge, exhaust gas recirculation (word)
RFRS_W	Target relative cylinder charge (inert gas + air) from internal and external exhaust gas recirculation
RFR_W	Relative cylinder charge (inert gas + air) über internal and external exhaust gas recirculation
RLFGKS_W	Corrected relative target fresh air charge (air that flows through the throttle plate and fuel tank breather)
RLFGS_W	Target relative fresh air charge (air that flows through the throttle plate and fuel tank breather)
RLRS_W	Target relative air charge uber internal and external exhaust gas recirculation
RLR_W	Relative air charge uber internal and external exhaust gas recirculation
RLSOL_W	Target cylinder charge
TFWDKSOM_W	Time constant for filtering throttle plate angle outwith the torque structure
TFWDKS_W	Time constant for wdks filtering
UMSRLN_W	Conversion factor air charge in mass flow
VFZG	Vehicle speed
VPSSPLS_W	Ratio of target intake manifold pressure to target boost pressure
VPSSPU_W	Ratio of ambient pressure to target intake manifold pressure
WDKSAP_W	Target throttle plate angle from the applications block
WDKSBUGD_W	Target throttle plate angle from the torque structure limited to the unrestricted angle
WDKSGV_W	Target throttle plate angle for the applications interface (filtered)
WDKSMX_W	Maximum target throttle plate angle
WDKSOM_W	Target throttle plate angle outwith the torque structure
WDKSV_W	Target throttle plate angle for the applications interface (unfiltered)
WDKUGD_W	Throttle plate angle, when 95% cylinder charge has been reached
WPED W	Normalised throttle pedal angle

GGHFM 57.60 (MAF Meter System Pulsations)

GGHFM 57.60 (MAF Meter System Pulsations) Function Description

The MAF sensor output is sampled at 1 millisecond intervals. The sampled voltage value is first linearized using the 512 value characteristic curve MLHFM (which contains only positive values) for further calculation of mass air flow. Therefore, when using a HFM5 sensor, an offset (defined by MLOFS) is required to take account of the reverse current region in the calculation of MLHFM values.

The calculated air mass values are then summed in a memory segment. Once a segment is nearly full, the simple arithmetic average of the cumulative value over the last segment is calculated, i.e. it is divided by the number of samples of the last segment and then the offset MLOFS is subtracted.

During idle conditions, a selection is made between the measured air mass flow and the maximum possible air mass flow at this operating point, mldmx_w (taken at a height of -500 m and a temperature of -40°C) weighted by the multiplication factor FKMSHFM. By this measure, short circuiting of U_{bat} output to the engine can be prevented. [See module DHFM 63.130 Diagnosis: MAF sensor signal plausibility check: *"With the HFM5 sensor, if the battery voltage is less than 11 V , no more information about the plausibility of the HFM signal is possible (basis: voltage levels of 0.5-2.0 V cause a short circuit between U_{bat} and U_{ref})..."]*

Then, the value is corrected via fpuk for pulsations and return flow (i.e. pressurized air dumped back to the intake tract on the overrun) and via fkhfm in areas with no pulsation and surging. When the turbo is on, the system constant SY_TURBO sets fpuk to 1.0 since there will not be any pulsations or return flow. The value mshfm_w is corrected in this case by the map KFKHFM.

Since different displacement elements of the engine hardware, such as the camshaft, intake manifold or charge movement flap can influence pulsation in the MAF sensor, the code words CWHFMPUKL1 and CWHFMPUKL2 determine which influencing factors are taken into account.

The air mass flow output is supplied as the 16-bit value mshfm_w. The RAM-cell mshfm_w is limited to zero. To take into account return flow (based on 1-segment) for turbo engines, the RAM-cell mshfms_w is provided, which is administered by the limiting value FW MLMIN.

The pulsation-correcting curve PUKANS corrects for the engine speed nmot so that intake air temperaturedependent displacements of actual pulsation areas are managed.

APP GGHFM 57.60 Application Notes

Pre-assignment of the Parameters

CWHFMPUKL1 = 1 CWHFMPUKL2 = 1 FLBKPUHFM = 0.5FNWUEPUHFM = 0.5KFKHFM = 1.0KFPUKLP1 = 1.0KFPUKLP12 = 1.0KFPUKLP2 = 1.0MLHFM = MAF sensor curve MLMIN = -200 kg/h MLOFS = 200 kg/h PUKANS = 1.0

Application Procedure

1. Determine, input and review the MAF sensor linearization curve

2. Linearization curves depend on size and type (hybrid/sensor) of the MAF metering system deployed

3. For the HFM5 sensor, the curve with return flow, i.e., positive and negative air masses and use additional offset (MLOFS = 200 kg/h)

4. When using an alternative plug-in sensor, check the linearization curve is appropriate for the mounting position used.

Requirements for the Application of the Pulsation Map

Mixture pre-input path:

GGHFM 57.60 (MAF Meter System Pulsations)

1. Normalise all enrichment (input factors and input-lambda), i.e. feed forward control to obtain lambda = 1; 2. In fuel systems where there is no constant differential pressure over the fuel injectors (e.g. returnless fuel systems, i.e. in which the pressure regulator is not working against the intake manifold pressure as a reference) this must especially be ensured for the application of pulsation maps (connection of a pressure regulator on the intake manifold).

3. If this is not technically possible, i.e. the differential pressure across the fuel injectors was previously considered in a correction curve (see note to returnless fuel systems), then carry out the following:

Pre-input charge detection:

- 1. Determine the MAF sensor characteristic curve
- 2. Normalise the pulsation corrections first (set KFPU, KFPUKLP1, KFPUKLP2, KFPUKLP12 to 1.0)
- 3. Set the MAF correction map values to 1.0

4. Limit rlmax by disabling or setting PSMXN to its maximum values

The pulsation correction depends on T_{ans} in the characteristic PUKANS stored as a factor and is addressed with T_{ans} /°C. This characteristic is used for engine speed correction to address the pulsation map KFPU.

PUKANS = $\sqrt{(T_0/T_{ANS})}$ where T₀ and T_{ANS} are absolute temperatures (i.e. in Kelvin)

The base temperature T_0 is $0^{\circ}C = 273$ K i.e. ftans $(0^{\circ}C) = 1.0$

To apply the curve with 8 data points for pulsation corrections:

T _{ANS} /°C	-40	-20	0	20	30	40	50	80
T _{ANS} /K	233	253	273	293	303	313	323	353
PUKANS	1.0824	1.0388	1.0000	0.9653	0.9492	0.9339	0.9194	0.8794

Application of the Pulse Maps KFPU, KFPUKLP1, KFPUKLP2, KFPUKLP12

The pulsation maps compensate for pulsation and reverse flow errors in the MAF meter system. There are four pulsation maps:

KFPU: the basic map KFPUKLP1: pulsation-influencing adjustment element 1 KFPUKLP2: pulsation-influencing adjustment element 2 KFPUKLP12: pulsation-influencing adjustment elements 1 and 2

Parameterization of the code words CWHFMPUKL1 and CWHFMPUKL2:

Definition of adjustment element 1 for taking pulsation into account CWHFMKLPU1:

- 1. 1 Intake manifold flap
- 2. Camshaft
- 3. Charge movement flap

Definition of adjustment element 2 for taking pulsation into account CWHFMKLPU2:

- 1. 2 Intake manifold flap
- 2. Camshaft
- 3. Charge movement flap

<u>Definition of the pulsation range:</u> MAF sensor voltage fluctuations with an amplitude of 0.5 V

Definition of the return-flow (i.e. pressurized air dumped back to the intake tract on the overrun) range: MAF sensor voltage <1 V

Pulsation Map Adaptation:

Determining the pulsation or reverse flow region; possibly changing the sample-point resolution of pulsation maps to better cover the pulsation region.

The air mass in the intake manifold (ml_w) is compared with the calculated air mass in the exhaust gas via the characteristic curves KFPU, KFPUKLP1, KFPUKLP2 and KFPUKLP12. As an alternative to the

GGHFM 57.60 (MAF Meter System Pulsations)

calculated air mass in the exhaust, the air mass flow through a pulsation-damping volume to the air filter housing (e.g. a Helmholtz resonator device) can be measured instead.

Application of the MAF Correction Map KFKHFM:

In regions of no pulsation, the air mass comparison is carried out via the map KFKHFM. In this way, MAFsensor errors caused, for example, by a problematic installation position can be corrected. For either, the balancing should maintain lambda of approximately 1.0, so the error in calculating the air mass in the exhaust gas is low. The residual errors (lambda deviation around 1.0) are interpreted as a mixture error and are compensated for by the characteristic curve FKKVS in the RKTI 11.40 module.

Definitions

Parameter	Definition
CWHFMPUKL1	Code word 1 for selecting one of the adjustment elements for MAF sensor-pulsation
CWHFMPUKL2	Code word 2 for selecting one of the adjustment elements for MAF sensor-pulsation map
FLBKPUHFM	Switching threshold for the charge movement flap adjustment factor for MAF sensor pulsation
FNWUEPUHFM	Switching threshold for the camshaft adjustment factor in MAF sensor pulsation
KFKHFM	Correction map for MAF sensor
KFPU	Pulsations map
KFPUKLP1	Pulsations map with active adjustment element 1
KFPUKLP12	Pulsations map with active adjustment elements 1 and 2
KFPUKLP2	Pulsations map with active adjustment element 2
MLHFM	Characteristic curve for linearization of MAF voltage
MLMIN	MAF sensor minimum air mass
MLOFS	Curve offset for the HFM5 sensor
PUKANS	Pulsations correction depending on intake air temperature
SY_LBK	System constant for the charge movement flap
SY_NWS	System constant for the camshaft control system: none, binary (on/off) or variable
SY_SU	System constant for alternative intake manifold
SY_TURBO	System constant for the turbocharger
Variable	Definition
ANZHFMA_W	Number of MAF sensor samples in a synchronisation
B_PUKLP1	Switching of pulsations map with active adjustment element 1
B_PUKLP2	Switching of pulsations map with active adjustment element 2
B_SU	Intake manifold condition
B_SU2	Intake manifold condition, 2. Flap
FKHFM	MAF sensor correction factor
FLB_W	Charge flow factor
FNWUE	Weighting factor for inlet valve camshaft overlap
FPUK	MAF sensor correction factor in pulsation range
MLHFMAS_W	Cumulative air mass in a synchronisation
MLHFMA_W	Air masses sampled by the MAF sensor (16-Bit)
MLHFMM_W	Average of sampled air masses (16 bit value)
MSHFMS_W	Air mass flow output value taking return flow into account (signed value)
MSHFM_W	Air mass flow output value (16-Bit)
NMOT	Engine speed
NMOTKOR	Engine speed intake air temperature correction (zur Pulsations correction)
PUANS	Pulsations correction depending on intake air temperature (T _{ans})
RL	Relative air charge
TANS	Intake air temperature
UHFM_W	MAF sensor voltage
WDKBA	Throttle plate angle relative to its lower end stop

See the *funktionsrahmen* for the following diagrams:

lambts main

lambts enable (Enabling conditions for Lambda-component protection and enabling through factor ftbts_w) lambts lambtszw (Component protection due to changes in ignition angle) lambts initialisation

Purpose:

Protection of components (exhaust manifold, turbocharger, etc.) through mixture enrichment.

Principle:

An excessively high exhaust gas temperature can be lowered by enriching the air-fuel mixture. Through this enrichment, more fuel enters the cylinder than would be required for stoichiometric combustion of the fuel. The unburned fuel vaporises on the cylinder walls and cools them which decreases the exhaust gas temperature.

LAMBTS: Overview

Target lambda can be enriched via the map KFLBTS which depends on the engine speed (nmot) and relative cylinder charge (rl). The enrichment is only effective when a modelled temperature tabgm_w, tkatm_w, tikatm_w or twistm_w in the sub-function LAMBTSENABLE exceeds its applicable threshold and the delay time TDLAMBTS + TVLBTS has expired. The system constant SY_ATMST defines whether twistm_w from the function %ATMST is available and the system constant SY_ATMLA defines whether twilam_w from the function %ATMLA is available.

The map KFLBTS describes the necessary steady-state enrichment, while the processes of the temperature model describe the dynamic state. This avoids early enrichment through a spike to a steady-state critical operating point.

The temperature hysteresis DTBTS or DTWISBTS prevents periodic switching on and off of the enrichment, if enrichment is set at a temperature below the cut-in temperature.

For projects with stereo exhaust systems, where the difference between the exhaust temperatures of the two cylinder banks at the same operating point can be very large, component protection can be applied separately to both cylinder banks via the maps KFLBTS and KFLBTS2 if the system constant SY_STERBTS = true.

A deterioration in ignition angle efficiency leads to an increase in exhaust gas temperature but this deterioration can be counteracted with a mixture enrichment (see sub-function DLAMBTSZW). The actual ignition angle is calculated from the ignition angle efficiency (etazwg), the basic ignition angle (zwgru) and the average ignition angle efficiency (etazwim). The difference of etazwg and etazwim results in the degradation efficiency (detazwbs). An additive enrichment depending on detazwbs can now be done via the map KFDLBTS. The enrichment can be reduced or eliminated in desired areas by means of the characteristic KFFDLBTS which is a function of engine speed and relative cylinder charge. Also, this enrichment is only effective when a modelled exhaust temperature exceeds its corresponding threshold.

The critical component temperatures can be exceeded for a brief time TVLBTS. First, however, the time TDLAMBTS must have expired. The low-pass filter ZDLBTS provides the option of smoothing an otherwise abrupt change in enrichment upon reaching a critical component temperature.

MEAN: Averaging the Efficiencies at the Actual Ignition Angle

Here is an averaging over 10 ms increments of the present ignition angle efficiencies over a 100 ms increments.

LAMBTS 2.120 Application Notes

Requirements:

- * Application of the basic ignition angle (see %ZWGRU)
- * Steady-state lambda basic adaptation
- * Application of knock control
- * Application of the exhaust temperature model (see %ATM), including lambda-path and ignition angle path

* Installation of a temperature sensor on the protected region of the exhaust system (e.g. exhaust manifold or catalytic converter)

Codewort LAMBTS

CWLAMBTS Bit No.	7	6	5	4	3	2	1	0
						Note 1	Note 2	Note 3

Note 1

If Bit 2 value = 1 then tabgkrm_w wird is used as the critical temperature

If Bit 2 value = 0 then tabgm_w w is used as the critical temperature

Note 2

If Bit 1 value = 1 then updating dlambts for transmission intervention applies

If Bit 1 value = 0 then dlambts for gear intervention is frozen

Note 3

If Bit 0 value = 1 then updating dlambts for dashpot applies If Bit 0 value = 0 then dlambts for dashpot is frozen Switch on only when system constant SY_TURBO is active

Example: Updating dlambts for dashpot and transmission protection frozen

→ CWLAMBTS Bit 0 = 1 and CWLAMBTS Bit 1 = 1 → CWLAMBTS = $2^0 + 2^1 = 1 + 2 = 3$

Presetting of parameters (function inactive!)

Enrichment through switching off the lambda target value: KFLBTS = 1.0 (all engine speeds & all relative cylinder charges)

Critical exhaust gas temperature: TABGBTS = 900°C

Critical temperature near the catalytic converter: TKATBTS = 900°C

Critical temperature in the catalytic converter: TIKATBTS = 900°C

Critical cylinder head temperature: TWISTBTS = 200°C

Critical turbocharger temperature: TWILABTS = 950°C

Temperature hysteresis for component protection: DTBTS = 20°C

Temperature hysteresis for cylinder head temperature: DTWISBTS = 10°C

Temperature hysteresis for turbocharger turbine temperature: DTWISBTS = 20°C

Enrichment through switching off delta lambda target value: KFDLBTS = 0.0 (for all detazwbs)

- Low-pass for deactivating enrichment: ZLBTS = 0.1 s
- Low-pass for deactivating delta-enrichment: ZDLBTS = 0.1 s

Time delay for enabling component protection deactivation: TDLAMBTS = 0.0 s (only effective prior to ignition).

Time delay for deactivating enrichment: TVLBTS = 0.0 s

Weighting factor for normalizing the delta lambda target value: KFFDLBTS = 1.0 (alle nmot, alle rl)

component protection factor depending on tabgm_w: FBSTABGM = 1.0 (alle tabgm_w)

SY_ATMST = 0, when %ATMST is not available

SY_ATMLA = 0, when %ATMLA is not available

Procedure:

1.) Application of Steady-state Enrichment

* A temperature sensor is installed to measure the actual temperature at the thermal critical point.

* Enrichment independent enabling of the exhaust gas temperature model: TKATBTS = TIKATBTS = TABGBTS = TWISTBTS = 20°C for example.

* Enrichment path through ignition angle intervention switched off: e.g. KFDLBTS = 0.0 (all detazwbs)

* Knock control is enabled through the application of the characteristic KFLBTS by measuring the exhaust gas temperature at each operating point and where necessary by enrichment (KFLBTS values <1) on a non-critical limiting value.

2.) Application of Enrichment through Ignition Angle Adjustment

In the application of the enrichment through ignition angle adjustment, steady-state enrichment via KFLBTS must be active.

Application of the enrichment map KFDLBTS:

* Set the ignition angle application without engine torque intervention condition (B_zwappl): CWMDAPP [bit 0] to be equal to 1

* Approach the operating point at which the largest overall enrichment was necessary in the map KFLBTS.

* Through ZWAPPL gradually retard the ignition angle and make enrichments for high exhaust gas temperature via KFDLBTS.

The characteristic field KFDLBTS should remain unchanged for the further application.

The characteristic field KFFDLBTS must be applied at the maximum latest ignition angle position (e.g. through ZWAPPL):

* Approach all operating points of KFFDLBTS and control exhaust temperature. Correct the enrichment.

3.) Application of the Temperature Threshold Values TABGBTS, TKATBTS, TIKATBTS, TWISTBTS

TABGBTS, tabgm and tabgkrm or refer to a location close to the lambda probe or exhaust manifold. TKATBTS and tkatm refer to a location near the catalytic converter.

TIKATBTS and tikatm refer to a location in the catalytic converter.

TWISTBTS and twistm refer to the cylinder head. If SY_ATMST = 0 twistm does not exist in the project.

All thresholds are applied only when all components must be protected. If a component is not critical, the corresponding threshold is set to the maximum possible value.

* Double-check application of the exhaust temperature model, including the lambda and ignition angle paths.

* If the actual measured temperature reaches the critical component temperature, the modelled temperature must be transferred to the corresponding threshold value. Possible errors in the exhaust gas temperature model can be found by again in the emerging thresholds TABGBTS, TKATBTS, and TIKATBTS TWISTBTS.

* The choice of values for the temperature thresholds TABGBTS, TKATBTS, TIKATBTS and TWISTBTS must be checked "dynamically". I.e. enrichment should not be used too late with a jump from a thermally non-critical to a thermally critical region, otherwise the component temperature will overshoot. In this case, a lower value for the corresponding threshold temperature should be selected.

* The temperature hysteresis DTBTS or DTWISBTS should be sufficiently large that the enrichment does not periodically turn on and off.

* A dead time TDLAMBTS > 0 s is permissible only in those projects in which a steady-state component critical temperature can be exceeded without damage on a one-off basis (total time that B_tatmbts is active), But normally, however TDLAMBTS = 0.0 s.

* A dead time TVLBTS > 0 s is permissible only in such projects in which a steady-state critical component temperature can be exceeded for brief periods any number of times with no damage. But normally, however, TVLBTS = 0.0 s.

* A delay with the time constants ZLBTS or ZDLBTS is only useful for projects where abrupt enrichment leads to a noticeable jump in torque. A delay in the enrichment will result in overshooting of the temperature components. If the overshoot is not tolerable, enrichment must be enabled from a lower component temperature.

Affected Functions:

%LAMKO via lambts_w

Parameter	Description
CWLAMBTS	Codeword: lambda component protection
DTBTS	Temperature hysteresis for component protection
DTWILABTS	Turbocharger temperature hysteresis for component protection
DTWISBTS	Cylinder head temperature hysteresis for component protection
ETADZW	Ignition angle efficiency depending on delta ignition angle
FBSTABGM	Component protection factor depending on modelled exhaust gas temperature

KFDLBTS KFFDLBTS KFLBTS	Delta lambda target value for component protection Factor for delta lambda target value for component protection Lambda target value for component protection					
KFLBTS2	Lambda target value 2 for component protection					
SNM16GKUB	Sample point distribution for mixture control: 16 sample points for engine temperature					
SRL12GKUW	Sample point distribution for mixture control: 12 sample points for relative cylinder charge (Word)					
SY_ATMLA	System constant exhaust gas temperature modelling: turbocharger available					
SY_ATMST	System constant exhaust gas temperature modelling: cylinder head available					
SY_STERBTS	System constant component protection exhaust gas bank selection					
SY_TURBO	System constant for turbocharger					
	Exhaust gas temperature threshold for component protection					
	I me delay for enabling one-off lambda component protection					
TKATBIS	Temperature threshold for component protection near the catalytic converter					
TVIBTS	Delay time for lambda target value for component protection					
TWILABTS	Temperature threshold for component protection of the turbocharger					
TWISTBTS	Temperature threshold for component protection of the cylinder head					
ZDLBTS	Time constant delta lambda component protection					
ZLBTS	Time constant lambda component protection					
Variable	Description					
B DASH	Condition: Dashpot limit change active					
B_GSAF	Condition: Transmission intervention switch requirement					
B_TABGBTS	Condition: Exhaust gas temperature exceeded					
B_TATMBTS	Condition: Threshold temperature in exhaust gas temperature model exceeded					
B_TIKATBTS	Condition: Threshold temperature in catalytic converter exceeded					
B_TKATBTS	Condition: Threshold temperature near catalytic converter exceeded					
B_IWILABIS	Condition: Turbocharger threshold temperature exceeded					
	Condition: Cylinder nead threshold temperature exceeded					
DIAMBTS W	Delta Ignition angle eniciency for component protection					
DZWG	Delta ignition angle: basic ignition angle to optimum ignition angle					
ETAZWG	Efficiency of the basic ignition angle					
ETAZWIM	Average efficiency of the actual ignition angle					
ETAZWIST	Actual ignition angle efficiency					
FLBTS_W	Lambda component protection factor					
LAMBTS_W	Lambda for component protection					
LAMBTS2_W	Lambda for component protection for cylinder bank 2					
LBTS_W	Lambda for component protection in steady-state map					
LBIS2_W	Lambda for component protection in steady-state map for cylinder bank 2					
	Engine speed					
KL_VV SV LAMBTS	System constant for component protection available					
TABGBTS W	Exhaust das temperature for component protection					
TABGKRM W	Exhaust gas temperature in exhaust manifold from the model					
TABGM W	Exhaust gas temperature before the catalytic converter from the model (Word)					
TIKATMW	Exhaust gas temperature in the catalytic converter from the model					
TKATM W	Exhaust gas temperature near the catalytic converter from the model (Word)					
TWILAM_W	Turbocharger casing temperature from the model					
TWISTM_W	Cylinder head temperature from the model: Kelvin in VS100, actual in °C					
ZWGRU	Basic ignition angle					
ZWOPT	Optimum ignition angle					

LAMFAW 7.100 (Driver's Requested Lambda)

See the *funktionsrahmen* for the following diagrams: lamfaw-lamfaw lamfaw-lamkr lamfaw-lamwl lamfaw-lamfadisable lamfaw-lamrlmin lamfaw-initialise

Function Description

The function LAMFAW brings about an enrichment of the fuel-air mixture via lamfa_w when the driver demands maximum torque via mrfa_w. This then corresponds to the full-load enrichment. The intervention to the mixture via lamfa_w can be delayed via the delay time TLAFA.

During turbocharger overboost, an additional enrichment is applied by a delta-lambda from the characteristic DLAMOB.

For the time TLAMFAS, an enrichment via the driver's request as a function of altitude (LAMFAS) can be prevented (see sub-function LAMFADISABLE). Triggering of this time will be initiated if B_kh = true, LAMFA <1.0 and the altitude at which the function is disabled (as defined in LAMFAS) has been reached.

In this way, a reproducible driving cycle can also be achieved at higher altitudes.

During a torque reduction, e.g. traction control intervention, engine speed limiter ..., the enrichment via the map LAMFAW can be disabled by setting CWMFAW Bit 1 = true.

In the sub-function LAMKR, an enrichment can be implemented during ignition angle intervention.

The sub-function LAMWL can be used for the enrichment during warm-up. If this procedure is used, tank-venting via the function LAMKO is not switched off.

In the sub-function LAMRLMIN, an enrichment via LAMRLMN is active for low loads (rl). This serves to improve the combustion efficiency at low loads. If CWLAMFAW bit 2 is set, then the emergency fuel tank breather is disabled during lamrImn-intervention.

Application Notes

A delay time TLAFA > 0 can only be applied when the mixture intervention via lamfa_w should be delayed.

Map LAMFA:

Engine speed sample points: 1000, 1400, 1800, 2200, 2600, 3000, 3400, 3800, 4200, 4600, 5000, 5400, 5800, 6200, 6600, 7000 rpm mrfa_w sample points: 70, 80, 90, 100, 110, 120 % Map values of 1.0

DLAMOB comprises the delta-lambda, so that an additional mixture enrichment is implemented in overboost mode.

Sampling points for engine speed: implemented as a group characteristic SNM06GKUB

Neutralization of the function by data: LAMFA = 1.0 and DLAMOB = $0.0 \rightarrow \text{lamfa}_w$ is then 1.0

The time TLAMFAS must be selected so that no large gradients are caused in the driver's requested enrichment (typically 240 s).

The characteristic LAMFAS contains values from 0 to 1. If the value is 0, enrichment via the altitude effect is active. Values other than 0 deactivate enrichment via LAMFA, if $B_kh =$ true and LAMFA values are < 1.0. The characteristic LAMFAS is not interpolated, which means that the characteristic initial value remains constant until a node is crossed.

For the fho-sample points of the characteristic LAMFAS, the following relationship applies: fho = 1 - altitude [m]/10,000 m

Since the variable fho has a quantization of 4/256 = 0.015625, this resolution must be considered when determining the switch-off. Similarly, there is a potential altitude deviation of ± 250 m because of the sensor tolerance.

For the calculation of the lower or upper threshold of fho, the following relationship applies for a nominal altitude cut-off threshold:

Lower altitude cut-off threshold:

 $\begin{array}{l} \mbox{fho [phys] = 1 - ((nominal altitude [m] - 250 m) / 10000) \rightarrow \mbox{fho [lnk] = Integer (fho[phys] / 0.015625) + 1Ink} \\ \rightarrow \mbox{fho upper limit [phys] = (1 - fho[lnk] \times 0.015625)} \\ \rightarrow \mbox{Altitude upper limit = (1 - fho upper limit [phys]) \times 10000} \end{array}$

Upper altitude cut-off threshold:

fho [phys] = 1 – ((nominal altitude [m] + 250 m) /10000) \rightarrow fho[lnk] = Integer (fho[phys] /0.015625) \rightarrow fho lower limit [phys] = fho[lnk] \times 0.015625 \rightarrow Altitude lower limit = (1 – fho lower limit [phys]) \times 10000

This produces the following values:

Nominal altitude Altitude upper limit fho lower limit	2,200 m 2,500 m 0.75	1,600 m 1,875 m 0.8125	The altitude upper limit is the fho lower limit!
Altitude lower limit	1,875 m	1,250 m	
fho upper limit	0.8125	0.875	

Thus, the characteristic LAMFAS is parameterized as follows for the nominal altitude of 2,200 m:

fho	0.734375	0.7500	0.8125
Value	0	1	0
	Enrichment active	Enrichment inactive	Enrichment active

Switching off the altitude-dependent enrichment suppression: LAMFAS = 0, TLAMFAS = 0

Values for lambda intervention lamfawkr_w during ignition angle retardation:

ZKLAMFAW: ZKWLAFWL:	2 s 2 s					
DLAMFAW:	0.01					
KFLAMKR:	Engin	e speed sample points:	Group characteristic SNM06GKUB			
	rl san	nple points:	Group characteristic SRL06GKUB			
	Map values:		All are 1.0 \rightarrow no weighting active			
KFLAMKRL:	dzlamfaw sample points:		Group characteristic SDZ0 6GKUB			
	rl san	nple points:	Group characteristic SRL06GKUB			
	Map	values:	All are $1.0 \rightarrow$ lambda intervention not active			
DLAMTANS:	Ambi	pient temperature sample points: 50.25, 60, 70.5, 80.25 °C				
	Map	values:	All are $0 \rightarrow$ lambda intervention not active			
KFLAFWL:	Engine speed sample points:		Group characteristic SNM06GKUB			
	rl san	nple points:	Group characteristic SRL06GKUB			
	Map	values:	All are $0 \rightarrow$ lambda intervention not active			
	In the	e map, delta values are en	tered, $-0.1 \rightarrow lamfwl w = 0.9!$			
DLAMOB:	Engine speed sample points:		Group characteristic SNM06GKUB			
	Map	values:	All are $0 \rightarrow$ no additional enrichment during overboost			
	In the	he map. delta values are entered + 0.1 \rightarrow lamfa = lamfaw - 0.1!				
RLLAMMN:	Engin	he speed sample points:	Group characteristic SNM06GKUB			
	Map	values:	$0\% \rightarrow \text{enrichment via LAMRLMN not active}$			
LAMRLMN:	Engin	e speed sample points:	Group characteristic SNM06GKUB			
	Map	values:	$1.0 \rightarrow \text{lambda} = 1.0$ (no enrichment)			
CWLAMFAW B	sit O:	0: dzwlamfaw = min (0, c	łzwwi)			
		1: dzwlamfaw = min (0, (dzwwl + wkrma)). Default value = 0.				
CWLAMFAW Bit 1:		0: LAMFAW also during limiter, etc. active	g torque reduction, e.g. via traction control, engine speed			
		1: no enrichment via LAN	IFAW during torque reduction (milsol < mifa)			
CWLAMFAW Bit 2:		0: B_ldeffw is always fai	lse \rightarrow emergency fuel tank breather also during lamrlmn_w-			
		1: B_ldeffw dependent of fuel tank breather disable	on lamrlmn_w-activation, when B_ldeffw = true, emergency and i.e. fuel tank breather valve shuts			
CWLAMFAW B	sit 3:	0: Disable driver's reques	sted lambda activation through catalyst heating enabled			
CWLAMFAW Bit 4:

- 1: Disable driver's requested lambda activation through catalyst heating not possible
- 0: lamfwl_w dependent on B_stend and VZ1-term 1: lamfwl_w not dependent on B_stend and VZ1-term

Group characteristic for engine speed sample points: SNM06GKUB: 760, 1520, 2560, 3520, 4560, 5520 rpm Group characteristic for relative load sample points: SRL06GKUB: 20, 40, 60, 80, 90 % Group characteristic for engine temperature sample points: STM0 8GKUB: -15, 0, 20, 40.5, 60, 75, 85.5, 105 °C

Group characteristic for dzwlamfaw sample points: SDZ06GKUB: -30, -20, -15, -10, -5, 0 degrees

Parameter	Description
	Codewold LAMPAW
	The should value for activating emicriment via driver's request
DLAMOB	Delta lambda during overboost
DLAMIANS	Air temperature-dependent enrichment
GANGFAW	Gear threshold for deactivating driver's request at altitude
KFLAFWL	Offset engine target lambda
KFLAMKR	Weighting factor for enrichment during ignition angle retardation
KFLAMKRL	Enrichment during ignition angle retardation
LAMFA	Driver's requested lambda
LAMFAS	Disable driver's requested lambda
LAMRLMN	Lambda control when rl < RLLAMMN to improve the combustion efficiency
RLLAMMN	Minimum requested load threshold for enrichment due to combustion efficiency
SDZ06GKUB	Sample point distribution for KELAMKRI
SNM06GKUB	Sample point distribution for KEI AMKR DI AMOB
SRI 06GKUB	Sample point distribution for KELAMKRI KELAFWI KELAMKR
STM08GKUB	8 engine temperature sample point distribution for KELAEWI
SV TUPBO	System constant: turbocharger
	Delay tine with driver's requested lambda active
	Delay time with driver's requested lambda active
	Delay time with driver's requested lambda at altitude active
	Manimum engine start temperature for deactivating driver's request at allude
	Maximum engine start temperature for deactivating driver's request at altitude
	Minimum time after start for deactivating driver's request at altitude
INSTEWMX	Maximum time after start for deactivating driver's request at altitude
ZKLAMFAW	Lime constant filtering enrichment via driver's request
ZKWLAFWL	Time constant weighting offset engine target lambda
Variable	Description
B_KH	Condition flag: catalyst heating
B_LAMFAS	Condition flag: disable driver's requested lambda
B_LAMFASA	Condition flag: altitude-dependent disabling time for driver's requested lambda is required
B_LAMFASH	Condition flag: altitude-dependent disabling time for driver's requested lambda is active
B_LDEFFW	Condition flag: defined target lambda (cylinder bank 1) via driver's request
B_LDOB	Condition flag: overboost active
B SAB	Condition flag: overrun fuel cut-off readiness
B STEND	Condition flag: end of start conditions reached
DZWLAMFAW	Delta ignition angle during knock control intervention or warm-up for enrichment via lambda
DZWWL	Delta ignition angle during warm-up
FHO	Altitude correction factor
GANGI	Actual gear
LAMFAWKR W	Driver's requested target lambda during ignition angle retardation (knock control) WI
LAMFAWS W	Driver's requested target lambda steady-state part
	Driver's requested target lambda part from man I AMEA
	Driver's requested target lambda (word)
	Offeet engine tarret lambda during warm-un
	Target lambda control to improve the combustion officiency at lower relative loads
	Index driver's requested options torque
	Driver's requested tergine tor evine to rear e path
	Divers requested torque for cyminder charge path
	Relative driver's requested torque from cruise control and throttle pedal
	Engine speed
RL	Relative cylinder charge
TANS	Ampient air temperature
	Engine temperature
IMSI	Engine start temperature
INSI_W	I me atter end of start conditions

LAMKO 9.80 Lambda Coordination

See the *funktionsrahmen* for the following diagrams:

lamko-main	Function overview
lamko-lamsel	Sub-function: lambda target selection for cylinder bank 1: LAMSEL
lamko-lamsel2	Sub-function: lambda target selection for cylinder bank 2: LAMSEL2
lamko-lamlim	Sub-function: LAMLIM: lambda limit engine running
lamko-lamkh	Sub-function: lambda intervention for catalyst heating in cylinder bank 1: LAMKH
lamko-lamkh2	Sub-function: lambda intervention for catalyst heating in cylinder bank 2: LAMKH2
lamko-lamdsk	Sub-function: lambda intervention for diagnosis (cylinder bank 1): LAMDSK
lamko-lamdsk2	Sub-function: lambda intervention for diagnosis (cylinder bank 2): LAMDSK2
lamko-lss1kor	Sub-function: lambda target correction via lambda probe (cylinder bank 1): LSS1KOR
lamko-lss2kor	Sub-function: lambda target correction via lambda probe (cylinder bank 2): LSS2KOR
lamko-init	Initialisation values:

Function Description

Lambda = 1.0 will be specified in the combustion chamber through the pilot control of fuel injection in module ESVST 4.20. The lambda coordination function LAMKO specifies which engine operating point the combustion chamber operates at lambda = 1.0. The position of the switch is a measure of the priority of the corresponding lambda intervention.

The highest priority is catalyst protection (LASOAB), followed by component protection or driver's desired value then catalyst clear out and catalyst heating.

Component protection for manifold(s), exhaust valve(s) and turbocharger(s) is implemented via the inputs lambts_w and lambts2_w. The input lambts2_w is only available if the system constant SY_STERBTS = true. This is only set for projects with stereo exhaust tracts which occurs when the two banks have very different exhaust gas temperatures for the engine same operating point.

For projects with exhaust gas temperature control via exhaust gas temperature sensors, correction control of the additive part dlamatr_w is included.

From start to end of warm-up lamnswl_w is active unless catalyst heating through secondary air is requested.

At the beginning of catalytic converter heating, a factor flakh from module LAKH for lamnswl_w is passed to lambda for catalyst heating lamkh_w. When catalyst heating is terminated it is passed back again with flakh to lamnswl_w. For systems with secondary air injection (B_slsfz), the lambda engine target (lamsbg_w) is calculated by means of the secondary air dilution arising from target lambda at the lambda probe lamsons_w via multiplication by the secondary air dilution factor flamsl_w.

The two sub-functions LSS1KOR and LSS2KOR correct the rounding error in the calculation of lamsons_w about 1.0 so that two-point lambda control is not unnecessarily shut down.

In normal operation, the lambda target (lamsbg) is provided by lamfa_w or lambts_w.

The two inputs lamlash_w and lamelsh_w are provided for diagnosis of the post-catalyst lambda probes. With these inputs, a change in the post-cat lambda probe voltage via a lambda intervention is implemented.

For catalyst diagnosis, lamdskt_w or lamdskt2_w are designated for the future of lambda intervention. This intervention is activated by condition flags B_lamdkt or B_dlamdkt2 whereas the intervention with index 2 is only available with SY_STERVK or SY_STERHK.

On catalyst clear-out, the target lambda is determined by lamka unless an even richer mixture is requested via lamnswl_w (especially when the engine is still cold).

Via the lambda intervention lamau_w, the exhaust emission test AU implements a lambda intervention for the catalyst check. For this purpose the system constant SY_AAU must be set in the project. The intervention is implemented when B_auakt = true.

At fuel injector switch off (B_evab, Bevab2 = true) the target lambda value is specified by the constant LASOAB. Thus, this can be achieved that in the associated exhaust tract of the deactivated cylinders so that no surplus hydrocarbons arise in the other cylinders when the entire cylinder bank is operated under lean conditions (e.g. LASOAB = 1.05) for catalyst protection.

For the torque calculation, the basic-lambda variable lambas is made available as the average of the two cylinder banks.

When a high lambda-dynamic situation occurs outside of warm-up, the catalytic converter heating range (B_lamnse = true) is no longer required and the computation time frame is transferred from 10 ms to 100 ms.

LAMKO 9.80 Lambda Coordination

Then, via the switches, the actually selected lambda (lamsubg_w) is limited via either of the two lambda thresholds LAMLGFTM (or LAMFLGSL with secondary air operation) and LAMLGMTM to the rich and lean engine operating limits.

If the lambda requirements for diagnostic functions, catalyst clear out or catalyst heating are active, the fuel tank breather must be prohibited, so that it serves bit B_lamsdef or either B_ldef and B_ldef2 for twin cylinder bank systems.

IMPORTANT: It must be ensured that the lean operating limits LAMLGMTM & LAMLGMKT do not go in the direction of zero because it directly affects the injection!

Application Notes

Data for initial application:

CWLAMKH = 0

LASOAB 1.05

LAMLGFTM = LAMFLGSL = 0.77

Sample points for LAMFLGSL: imlatm = 2, 4, 6, 8, 10, 12 kg

LAMLGMTM sample points for tmot are not freely selectable, since the group line tmot is a function of ESWL

Value = 1.2

LAMSOSUF = 0.998779

LAMSOSOF = 1.001221 equivalent to 5 increments difference of 1.0

The inputs lamka_w and lamka2_w are inactive if the lambda value \geq 2. The catalyst clear out function sets this value in the inactive case at lambda = 8.0.

CWLAMKH = 1 Minimum value of lamnswl_w or lamkhe_w to act

= 0 lamkhe acts directly

Abbreviations

Parameter	Description
CWLAMKH	Code word for lambda coordination during catalyst heating
LAMFLGSL	Lambda engine operating limit fett bei Sekundärlufteinblasung
LAMLGFKT	Rich lambda operating limit during short test
LAMLGFTM	Rich lambda operating limit
LAMLGMKT	Lean lambda operating limit during short test
LAMLGMTM	Lean lambda operating limit
LAMSOSOF	Lambda probe target upper limit for 1.0-window
LAMSOSUF	Lambda probe target lower limit for 1.0-window
LASOAB	Target lambda value during cylinder bank deactivation
STM12ESUB	Sample point distribution for engine temperature (tmot)
SY_AAU	System constant: calibrator specification of target lambda for exhaust emissions test (AU) is possible
SY_ATR	System constant: exhaust gas temperature control is available
SY_DKAT	System constant: status information about the system's available catalyst diagnostics
SY_DLSHV	System constant: condition module DLSHV (post-catalyst probe swapping) available
SY_STERBTS	System constant: exhaust gas bank selective component protection
SY_STERHK	System constant: condition stereo lambda control post-catalyst
SY_STERVK	System constant: condition stereo lambda control pre-catalyst
Variable	Description
B_AUAKT	Condition flag: exhaust emissions test active
B_BEVAB	Condition flag: injector shut-off in cylinder bank 1
B_BEVAB2	Condition flag: injector shut-off in cylinder bank 2
B_DSLA	Adaptation phase: determining secondary air mass
B_FA	Condition flag: general function requirement
B_FALSH	Condition flag: function requirement post-catalyst lambda probe for cylinder bank 1
B_FALSH2	Condition flag: function requirement post-catalyst lambda probe for cylinder bank 2
B_FASLA	Condition flag: external requirement to activate secondary air
B_KH	Condition flag: catalyst heating
B_LALGF	Condition flag: rich lambda operating limit active (cylinder bank 1)
B_LALGF2	Condition flag: rich lambda operating limit active (cylinder bank 2)

LAMKO 9.80 Lambda Coordination

B LAMBTS Lambda for component protection is active (cylinder bank 1) **B** LAMBTS2 Lambda for component protection is active (cylinder bank 2) Target lambda for diagnostic function requirement **B_LAMDIAG B** LAMDKT Lambda target intervention for catalyst diagnose active **B** LAMDKT2 Lambda target intervention for catalyst diagnose active **B** LAMKA Lambda for catalyst clear out active **B** LAMKA2 Lambda for catalyst clear out active B LAMKH Condition flag: target lambda for catalyst heaing active **B** LAMKHE No lambda requirement from module LAKH Condition flag for enleanment in module LAMKO (cylinder bank 1) B LAMLASH B LAMLASH2 Condition flag for enleanment in module LAMKO (cylinder bank 2) B_LAMLSHV Condition flag for enleanment or enrichment in module LAMKO B_LAMLSHV2 Condition flag for enleanment or enrichment in module LAMKO Bank 2 Condition flag: end of lamns_w calculation **B_LAMNSE B_LAMNSWL** Lambda engine target for post-start and warm-up active B LAMSDEF Condition flag: defined target lambda **B_LDEF** Condition flag: defined target lambda (cylinder bank 1) **B_LDEF2** Condition flag: defined target lambda (cylinder bank 2) **B** LDEFFW Condition flag: defined target lambda (cylinder bank 1) via driver's request B SLS Condition flag: secondary air control active **B_SLSFZ** Condition flag: secondary air control is installed in the vehicle DLAMATR W Delta target lambda from exhaust gas temperature regulation (cylinder bank 1) Delta target lambda from exhaust gas temperature regulation (cylinder bank 2) DLAMATR2 W Factor for controlling lambda-engine target during catalyst heaing FLAMKH FLAMSL W Factor for lambda adjustment via secondary air (cylinder bank 1) FLAMSL2 W Factor for lambda adjustment via secondary air (cylinder bank 2) IMLATM Integrated air mass flow from engine start to the maximum value LAMAU W Lambda for exhaust emission test LAMBAS Basic lambda LAMBTS W Lambda for component protection (cylinder bank 1) LAMBTS2 W Lambda for component protection (cylinder bank 2) LAMDKT W Target lambda for catalyst diagnostics (cylinder bank 1) LAMDKT2_W Target lambda for catalyst diagnostics (cylinder bank 2) LAMELSH_W Target lambda for electric probe diagnostics post-catalyst (Kurztrip, cylinder bank 1) LAMELSH2_W Target lambda for electric probe diagnostics post-catalyst (Kurztrip, cylinder bank 2) LAMFA_W Target driver's requested lambda (word) LAMKA W Target lambda value catalyst clear out (cylinder bank 1) LAMKA2 W Target lambda value catalyst clear out (cylinder bank 2) LAMKH W Lambda-engine target during catalyst heaing (word, cylinder bank 1) LAMKH2 W Lambda-engine target during catalyst heaing (word, cylinder bank 2) Lambda-engine target during catalyst heaing, effective (cylinder bank 1) LAMKHE W LAMKHE2 W Lambda-enging target during catalyst heaing, effective (cylinder bank 2) LAMLASH W Target lambda for test vibration check post-catalyst (cylinder bank 1) Target lambda for test vibration check post-catalyst (cylinder bank 2) LAMLASH2_W LAMLGFMN Lambda engine rich operating limit LAMLGM Lean lambda operating limit LAMLSHV W Target lambda for test post-catalyst probe substitution (cylinder bank 1) LAMLSHV2 W Target lambda for test post-catalyst probe substitution (cylinder bank 2) LAMNSWL W Lambda-engine target for post-start and warm-up LAMS2 W Target lambda (word) LAMSBG W Target lambda limit (word, cylinder bank 1) LAMSBG2 W Target lambda limit (word, cylinder bank 2) LAMSONS W Target lambda value based on the lambda probe installation location (cylinder bank 1) LAMSONS2_W Target lambda value based on the lambda probe installation location (cylinder bank 2) LAMSOS_W Target lambda value based on the lambda probe installation location (cylinder bank 1) LAMSOS2_W Target lambda value based on the lambda probe installation location (cylinder bank 2) LAMSUBG W Unlimited target lambda (word, cylinder bank 1) LAMSUBG2 W Unlimited target lambda (word, cylinder bank 2) LAMS W Target lambda (word) LAMVOA W Lambda pilot control without additive part (cylinder bank 1) LAMVOA2 W Lambda pilot control without additive part (cylinder bank 2) TMOT Engine temperature

See the *funktionsrahmen* for the following diagrams:

Idrlmx-mainLDRLMX function definitionIdrlmx-fldrrxIdrlmx-sstbIdrlmx-setIdrlmx-rlmx-wIdrlmx-tselIdrlmx-frxta-wIdrlmx-hierarchyIdrlmx-initialise

LDRLMX 3.100 Function Description

The function LDRLMX calculates the allowed maximum cylinder charge.

In the main path, the maximum charge value dependent on engine speed is given by the characteristic LDRXN. This can be corrected, if necessary, through intervention of the workshop tester.

For this purpose, an additive overboost increase (drlmaxo, delta maximum cylinder charge during overboost) is applied via the knock-control intervention.

On the rlmx path, a multiplicative correction is applied via the characteristic field KFTARX as a function of engine speed and intake air temperature.

Subsequently, there is an intervention via the sub-function FLDRRX as a function of the mean ignition angle retardation in knock control (wkrma). This function consists of two parts, a quasi-steady state long-time part (permanent RAM) which takes the fuel octane rating into account, and a dynamic short-time part to take all other perturbations into account.

The low pass of the long-time part is active only above a speed-dependent load threshold RLKRLDA that is representative for fuel adaption. The characteristic field KFFLLDE sets the steady-state reduction.

The low pass of the short-time part works with the difference of the filtered long-time average value (wkrmstat) and the actual average value (wkrma). To avoid interference of opposing interventions from both the aforementioned parts, the minimum difference is limited to zero.

The associated drawdown value is determined by KFFSLDE.

The overboost path is corrected separately, by a dependence on the sum of both low-pass outputs (wkrmsu) and the speed of the associated drawdown is determined via KFFLDEO.

The time constants of the two parts are each separated into predetermined up-regulating and down-regulating speed-dependencies.

Further on down the main pathway, the maximum cylinder charge is limited by an external pressure dependency to avoid overloading the turbocharger at high altitudes.

This limit (maximum compressor pressure ratio) which is engine speed and tsel (tans ÷ tumc)-dependent is determined through KFLDHBN, by multiplying the external pressure by the maximum absolute pressure and then using pirg_w and fupsrl_w to convert to a cylinder charge level.

When an ambient temperature sensor is present, the map KFLDHBN is addressed with the ambient temperature through the system constant SY_TFUMG and CWRLMX = 1 and to the instrument cluster via CAN. If no ambient temperature sensor is available or CWRLMX = 0, the map KFLDHBN is addressed with tans.

Via the system constants SY_TFMO, SY_GGGTS the oil temperature (toel) or the cooling water temperature from the instrument cluster (tmki) are read by sensors, whose signal is evaluated in functions %GGTOL or %GGGTS. If the respective variables are available via the CAN (tolc or tmkic) then switching to the CAN-variables will occur or, in case of failure, to surrogate values.

If a system failure is detected, an additional engine speed dependent (pressure) limitation (LDPBN) comes into force, which is analogous to the altitude limitation on the cylinder charge level. Switching back only occurs when resetting the tripping fault and in idle mode (B_II).

In the over-charge condition (E_ldo) an engine speed dependent limit (LDORXN) is switched in so that both the engine and the turbocharger adequately protected. Switching back also occurs only when resetting the error (E_ldo) and in idle-mode (B_ll).

LDRLMX 3.100 Application Notes

LDRLMX 3.100 (Calculation of Maximum Cylinder Charge rlmax in Boost Pressure Control)

LDRXN: It must be ensured that even at speeds below the turbocharger response speed meaningful rlmaxvalues (about 10% above the value of throttle plate at full open test bench) can be specified. Above the turbocharger response speed, the regular allowable and desired rlmax values are defined in this characteristic.

LDORXN: maximum allowable cylinder charge, such that there is sufficient protection by an appropriately strong throttling of the throttle and turbocharger. (Remove the wastegate pressure hose during application!) LDPBN: pressure relief in case of diagnosis (sudden torque drop should be no larger than about 15%).

KFLDHBN: Firstly, in the compressor performance map, acquire the regular full load line at speed sample points of KFLDHBN: as well as the maximum pressure ratio line (due to the surge limit, maximum turbocharger-speed or prohibited areas of poor efficiency) to define the operational limit.

Then one carries on the height gradients from the normal full load line starting, at any engine speed, up to an operating limit.

This increases with increasing altitude (decreasing ambient pressure) of the volume flow rate and the pressure ratio with 1013 ÷ ambient pressure.

This new intersection then defines the maximum pressure ratio for KFLDHBN at the respective engine speed.

Attention!

It must be ensured through appropriate application of RLKRLDA and LDRXN that the operating range of the long-time filter (rl > RLKRLDA) can always be reached!

Otherwise, it might happen that a very large decrease will be locked in the long-time part itself and no new adaptation can take place.

All other values are highly dependent on the project.

Basic data input

ATTENTION applicators, these data are extremely project-specific and must be verified in each project application!

Please note carefully or risk engine damage!

In order to achieve the same functionality as in LDRLMX 3.70 in the absence of CAN message from the instrument cluster, note the following.

SY_TFMO SY_GGGTS Remark

0	0	FKRXTOL and KFFKRXTM set = $1 \ge \text{frxt} = 1$
1	0	FKRXTOL set to a maximum value ≥ frxt = output KFFKRXTM
0	1	KFFKRXTM set to a maximum value ≥ frxt = output FKRXTOL

LDRXN : 140%

LDORXN: 15%

LDPBN: 1500 mbar

KFLDHBN: from low engine speed 1.9 to medium engine speed (2500 rpm) constant 2.5

FKRXTOL: 1.0 (1.0 does not limit the boost pressure control)

KFFKRXTM: 1.0 (1.0 does not limit the boost pressure control)

KFFLDEO: 1.0 (1.0 does not limit the boost pressure control)

KFFSLDE: 1.0 (1.0 does not limit the boost pressure control)

KFFLLDE: 1.0 (1.0 does not limit the boost pressure control)

KFFWLLDE: 1.0 (1.0 does not limit the boost pressure control)

KFTARX: data values of 1.0 below IAT of 75°C. Data values linearly reduced from 1.0 to 0.8 between 75°C and 120°C)

KFTARXZK: about 10% less than KFTARX

LDRXNZK: about 15% less than LDRXN

RLKRLDA: ca. $0.6 \times LDRXN$ (the greatest possible relative load reduction must be greater than the value from RLKRLDA otherwise there will be a risk of dead lock!)

TLKRLDAB: ca. 3-5 seconds

TLKRLDAU: ca. 5-7 seconds

TSKRLDAB: 1-2 seconds

TSKRLDAU: 2-4 seconds

CWRLMX: 1 (Addressing of KFLDHBN via ambient temperature in instrument cluster (tumc)). 0 (Addressing of KFLDHBN via intake air temperature (tans)).

Parameter	Description
CWRIMX	Codeword for LDRI MX (boost pressure control)
FKRXTOL	Eactor for correction of rimax at higher engine oil temperature
KEEKRXTM	Factor for correction of rimax at higher engine temperature
	Factor for boost pressure intervention at overboost value via knock control
KEELLDE	Factor for slow boost pressure control intervention at rimax via knock control
	Factor for fast boost pressure control intervention (lowering)
KEEWILDE	Weighting factor for slow boost pressure intervention at rimax via knock control
	Boost pressure control upper limit (maximum compressor pressure ratio)
KFTARX	Map for maximum cylinder charge IAT correction factor
KFTARXZK	Map for maximum cylinder charge IAT correction factor during continuous knock
LDORXN	Maximum cylinder charge LDR during E Ido (overboost error)
LDPBN	Charge pressure control P-limit when engine temperature is too high
LDRXN	Maximum cylinder charge (charge pressure control)
LDRXNZK	Maximum cylinder charge during continuous knock (charge pressure control)
RLKRLDA	RL-threshold for slow charge pressure control intervention (adaption)
SNM08LDUB	Sample point distribution for charge pressure control
SNM08LDUW	Sample point distribution for charge pressure control
SNM12LDUW	Sample point distribution for charge pressure control
STA08LDUB	Sample point distribution for charge pressure control
SWK08LDUW	Sample point distribution for charge pressure control
SWK108LDUW	Sample point distribution for charge pressure control
SWK208LDUW	Sample point distribution for charge pressure control
SY_ATR	System constant: exhaust gas temperature control available
SY_GGGTS	System constant: temperature transducer signal accuracy
SY_TFMO	System constant: TOEL-sensor present (Initial. GGTFM surrogate value)
SY_TFUMG	System constant: ambient temperature sensor present
SY TRLX	System constant: intervention for workshop tester for rlmax present
TLKRLDAB	Time constant for slow LDR-reduction
TLKRLDAU	Time constant for slow LDR-up regulation
ТМОТМХ	Engine temperature threshold for initial filling of the fuel system
TOELMX	Oil temperature threshold for engine protection during transmission emergency
TOLEWRLMX	Surrogate oil temperature value with faulty CAN-message
TSKRLDAB	Time constant for fast charge pressure control lowering
TSKRLDAU	Time constant for fast charge pressure control up-regulation
Variable	Description
B_ATRF	Condition: exhaust gas temperature control error
B_ATSB	Condition: exhaust gas temperature sensor operational
B_BRLMX	Condition: charge pressure control limit for maximum cylinder charge
B_CKIEN	Condition: CAN-transmission from instrument cluster enable
B_KFZK	Condition: map for knock protection
B_LL	
	Condition: power fail
	Condition: engine temperature from the instrument cluster operational
	Condition, on temperature from instrument cluster can be evaluated
	Condition. error in CAN-ampient temperature information
DED ATS2	ECU internal error path number: exhaust temperature sensor, cylinder bank 1
DED LDO	ECU internal error path number, exhaust temperature sensor, cylinder bank 2
	ECO internal error path number, overboost charge pressure control

DFP_TA DFP_TM DFP_TMKI DFP_TOL DRLMAXO DWKRM_W E_ATS E_ATS E_ATS2	ECU internal error path number: intake air temperature TANS (-charge air) ECU internal error path number: engine temperature ECU internal error path number: engine temperature from the instrument cluster ECU internal error path number: oil temperature Delta maximum cylinder charge during overboost Difference: wkrm – wkrmstat Error flag: exhaust gas temperature sensor, cylinder bank 1 Error flag: exhaust gas temperatur sensor, cylinder bank 2
E_LDO	Error flag: charge pressure characteristic; upper value exceeded
E_TA	Error flag: intake air temperature
E_TM	Error flag: engine temperature
E_TMKI	Error flag: engine temperature from the instrument cluster
E_TOL	Error flag: oil temperature
FLDRRX_W	Correction factor for maximum cylinder charge from knock control
FLDRXK_W	Factor for LDR rimax-correction via the short-time part
	Factor for LDR rimax-correction via the long-time part
	Factor for correction of rime as a function of triki and tol
FRAI EDYTA W	Factor for correction of rimx as a function of intake air temperature
	Factor for system-related conversion of pressure to cylinder charge (16-Bit)
IDRIMS W	Limiting value for maximum cylinder charge LDR for engine protection
IDRITS W	Limiting value for maximum cylinder charge LDR for turbocharger protection
NMOT	Engine speed
NMOT W	Engine speed (word)
PIRG W	Partial pressure of residual gas internal exhaust gas recirculation (16-Bit)
PU	Ambient pressure
RL	Relative cylinder charge
RLMAX_W	Maximum permitted charge at the turbo
RLMXKO_W	Maximum corrected cylinder charge (without limitations)
RLMX_W	Rohwert maximum cylinder charge
TANS	Intake air temperature
TMKI	Engine temperature from the instrument cluster
ТМОТ	Engine temperature
TMOTLDRLMX	Engine temperature in LDRLMX after selection (tmot/tmkic/tmki)
TOEL	Oil temperature
TOELLDRLMX	Oil temperature in LDRLMX after selection (tolc/toel/TOLEWRLMX)
TOLC	Oil temperature from instrument cluster message
TUMC	Selected temperature (tans/tumc)
	Vohiele speed
	Additive cylinder charge correction for rimy from the adjustment system
VSTRLX	Adjustable value of the maximum cylinder charge for the calibrator/tester
WKRMA	Average value of the individual cylinder ignition angle retardation (knock control)
* * 1 \1 \1 \1 \1 \1	general (in emergency mode with safety margin)
WKRMDY W	Dynamic average value of the individual cylinder ignition angle retardation
WKRMSTAT W	Quasi-steady state average value of the individual cylinder ignition angle retardation
WKRMSU_W	Total value of the dynamic and static average value of the individual cylinder ignition angle retardation

See the *funktionsrahmen* for the following diagrams:

LDRPID Main LDRPID PID Parameters LDRPID PID Control LDRPID BB PID LDRPID STLD LDRPID BBLDRPID LDRPID LDIMXAK LDRPID SSTB LDRPID Initialise LDRPID E-LDRA

LDRPID 25.10 Function Description

When charge pressure regulation (B_ldr) is active, the control error (lde) of the difference between ambient pressure (plsol) and the pressure upstream of the throttle (pvdkds) is calculated; when charge pressure regulation is inactive, lde is set to 0.

PID-Control:

This control scheme uses a type 3PR2 (three parameter controller with two output parameters to be optimised) PID controller with adaptive pilot-operated integral control. The integral component takes the form of min/max limitation within an applicable tolerance band to give adaptive tracking of duty cycle during steady-state running. To use the entire duty cycle range (which has very different gradients) it is necessary to linearise the control system software, so that the PID-controller gives a linear response. This is achieved with the map KFLDRL which closely regulates the wastegate controller duty cycle by applying an opposing non-linearity so that the regulator-controlled system appears linear.

The control algorithms are defined thus:

Proportional component	ldptv	= (LDRQ0DY (or LDRQ0S) - KFLDRQ2 (or 0)) × Ide
Integral component	lditv	= lditv(i-1) + KFLDRQ1 (or LDRQ1ST) × lde(i-1)
Derivative component	ldrdtv	= $(Ide - Ide(i-1)) \times KFLDRQ2 (or 0)$

where Ide is the charge pressure regulation control error, i.e. (set point - process value) or (DV - MV)

There are basically two distinct operating modes:

1. <u>IB_Iddy</u>: Quasi steady-state operation with PI control which gives a relatively weak control action. Derivation of the control parameters is carried out via oscillation testing on an engine dynamometer using the Ziegler-Nichols tuning method.

2. B_lddy: Dynamic performance with PID control which gives a strong control action. Derivation of the control parameters is carried out via oscillation testing on an engine dynamometer.

These operating states are distinguished via the control error, i.e., a positive deviation above a threshold activates the dynamic control intervention and it is only withdrawn when the deviation changes sign (i.e. the actual value exceeds desired value). The transient is managed with the aim of not causing overshoot over the entire region in the quasi steady-state mode.

In the quasi steady-state operation, the derivative component of the corresponding parameter is switched off to avoid unnecessary control signal noise. In the dynamic mode, a minimum settling time is obtained with the help of a strongly-intervening proportional component. The control is robust up to run and to further improve the transient response of the integral component, an adaptive limit is provided. This limiting factor is a function of engine speed (nmot), ambient pressure (plsol), altitude (pu), intake air temperature (tans) and the additively-superimposed 5 range adaptation.

These limits reliably prevent the integral controller causing overshoot. An integral output above the applicable upper safety limit (LDDIMXN) or below the lower limit (LDDIMN) will disable the steady-state integral function. The structures of the limits are interpreted as follows:

Real-Time Tracking and Adaptation:

1. Negative Tracking

1.1 In the quasi-steady state at full load condition (B_ldvl) with B_ldr (LDR active) after debounce time TLDIAN, the actual limiting value ldimxr is adjusted down to smaller duty cycle values with the increment LDIAN until the corrected value of the actual integral component (lditv) is achieved.

1.2 Idimxr will also be adjusted down if, during dynamic operation under full load, an overshoot greater than LDEIAU for a period longer than the debounce time TLDIAN occurs.

2. Positive Tracking

If the actual limiting value is too small order to correct fully, i.e. (a) deviation > LDEIAP (approx. –20 mbar), (b) Iditv is at its end stop (i.e. \geq Idimxr + Idimxak) or (c) closed-loop conditions (B_Idr) on the expiry of a engine speed-dependent debounce time TLDIAPN with increments LDDIAP per program run, the actual limiting value Idimxr is corrected to larger values until the current demand for integration is just met, and the prescribed safety margin to the integrator limiting value is maintained. The engine speed must always be above NLDIAPU. In addition to the aforementioned conditions, with only a slight MV-DV control error (Ide < LDEIAPS, for example, 60 mbar), the debounce time previously tracked positive will be reduced by FTLDIAP.

3. Read Adaptation

When full load conditions B_ldr (lditv > 0) are met or when the sample points change, the adaptation range is read, whereby the change is confined between the current adaptation value and the current adjustment values LDMXNN or LDMXPN. Discontinuity in the driving behavior can be prevented via this method.

4. Write Adaptation

The stored adjustment value (write adaptation) occurs only after expiry of the debounce time TLDIAPN, detection of full load condition (B_ldvl) and above a speed threshold (NLDIAPU).

LDRPID 25.10 Application Notes

Determining the Variables

1. Linearization Map KFLDRL:

On the engine dynamometer, the course of the boost pressure pvdkds is determined as a function of duty cycle. These efforts should fully open the throttle plate such that the duty cycle (see CWMDAPP, code word for application without torque functions) is driven significantly above the normal maximum. Charge pressure can be driven out as far as possible (up to 300 mbar above the maximum boost pressure) to determine the course as completely as possible. This is done in 500 rpm increments starting at 1,500 rpm up to the maximum engine speed (Nmax). The necessary linearization values listed below at any speed graphically (or numerically) are determined as follows: In a graph of pvdkds as a function of ldtvm, the values lie on a straight line between the first measuring point (0%) and by the last measuring point (max. 95%). After that, e.g. starting at 10% duty cycle, the pressure values belonging to the linear relationship and the pressure values corresponding to the ldtvm value of the curve are determined.

These ldtvm values are now entered in each field in the characteristic curve KFLDRL at the appropriate reference point (here 10%). Ensure that the incoming duty cycle is equal to the outgoing at no later than 95% duty cycle (= LDTVMX). The application target is to achieve the widest possible linearization of the controlled system from the perspective of the regulator.

2. LDRQ0DY: by the process of so-called control variable specification, i.e. in the lowest speed within full load conditions B_ldr, the control value (duty cycle) should be equal to 100% for only a short time. Including the project-specific boundary condition emax, the maximum possible deviation (mean full load value – mean base boost pressure value) is obtained as follows:

LDRQ0DY = 100% / emax (%Duty Cycle ÷ 100 mbar)

3. KFLDRQ2: when n < 2500 rpm = 0; for n > 2500 in the range of medium-sized MV-DV control errors (lde) increase KFLDRQ2 incrementally up to maximum 0.6 (maximum 0.9) × LDRQ0DY. When n > 2500 rpm and lde < 100 mbar or lde > 500 mbar, reduce KFLDRQ2 on a sliding scale to 0 if benefits are observed. To counteract problems with overshooting caused solely by the engine/turbocharger (using oscillation testing with pure control) large KFLDRQ2 values in conjunction with slightly larger LDRQ0DY values should be tried.

4. Steady-state Control Parameters

4.1 LDRQ0S through an oscillation test with proportional control by the Ziegler-Nichols method on the engine dynamometer: full load operating points (possibly with overboost) in the speed range of the maximum engine torque (i.e. nMdmax –100/+300 RPM) with PI control (initially setting weak control action parameters!) to approach a control error equal to zero. Thereafter, by changing LDRQ1ST to be equal to 0 in proportional control and LDRQ0S appears to increase until distinct oscillation of controlled variable occurs. By so doing, the controlled variable will be suitable to read off an oscillation around the cycle time/period (Tcrit) (a clearly recognizable sine curve is required!). With the two measured values Tcrit and LDRQ0S(crit), the parameters LDRQ0S and LDRSTQ1 can be determined as follows:

Caution: UMDYLDR for this test is set to the maximum value!

 $LDRQ0S = 0.4 \times LDRQ0S(crit.)$

4.2 LDRSTQ1 = $0.5 \times LDRQ0S(crit.) \times T_0/T_{crit}$; T_0 = sample time (usually = 0.05 s) for all parameters über n i.d.R. same values apply.

The three values determined below can (and should) be reduced if advantages are observed in driving performance. An increase is not acceptable for reasons of stability!

5. Determination of the Integral Limits:

KFLDIMX specifies the steady-state duty cycle values. KFLDIOPU specifies the duty cycle correction values as a function of altitude (pu). LDIATA specifies the correction values as a function of intake air temperature (tans).

Integral Limit Adaptation: Detection of full-load charge pressure regulation occurs about 2% from the actual pedal stop B_ldvl.

LDEIAU: ca. -100 mbar LDAMN: -15... -20 % LDEIAO: 20...30 mbar LDEIAP: ca. -20 mbar LDEIAPS: ca. 60 mbar TLDIAN: ca. 0.3 s TLDIAPN: ca. 1.5 × respective T95-time FTLDIAP: ca. 0.1...0.2 FTLDIA: ca. 0.5...1 NLDIAPU: response speed (highest full load pressure that can be regulated) as a function of pu + ca. 250/min

Caution: Ensure that the lowest learning cell in the altitude correction is writable otherwise, when starting from a low speed, the initial adaptation value of the lowest learning cell (= 0%) will be removed and the overlying cells for correcting the adjustment limit (false) will be overwritten!

STLDIA 1 > NLDIAPU (Max.)

LDMXNN: ca. -5% LDMXNP: ca. 5%

6. UMDYLDR: ca. 5% of the maximum desired value.

7. Adjust KFLDRQ1 until the transient responses of the integral component resulting from load jumps from medium load to full load towards the end of the short-term attack time just reach the actual limiting value ldimx (at all speeds!). In this application, LDDIMXN increments should be no more than 2 to 3%!

8. LDDIMXN: about 15% below NLDIAPU (high speed) and about 3% above this speed (simultaneously fully regulating the safety margin)

9. LDDIMNN: apply in the case of transitory problems arising from lighter dynamic response of around 5%, otherwise use the maximum value to deaden/nullify the function.

Parameter	Description
CWLDIMX	Codeword for application procedures KFLDIMX/KFLDIOPU
FTLDIA	Factor for enabling debounce adaptation

FTLDIAP	Factor for debounce time for tracking positive integral adaptation
KFLDIMX	Map specifying the integral control limits for charge pressure regulation
KFLDIOPU	Correction for altitude influences on the duty cycle value
KFLDIWL	Correction charge pressure regulation integral limits during warm-up
KFLDRL	Map for linearising charge pressure as a function of duty cycle
KFLDRQ0	Map for PID control parameter Q0 (proportional coefficients) in charge pressure regulation
KFLDRQ1	Map for PID control parameter Q1 (integral coefficients) in charge pressure regulation
KFLDRQ2	Map for PID control parameter Q2 (derivative coefficients) in charge pressure regulation
KERBGOE	Offset for the integral control limit in charge pressure regulation PD control
	Minimum limiting value in charge pressure regulation integral adaptation
	Increment per program run for the perative tracking integral limit
	Increment per program run for the positive tracking integral limit
	Safaty margin integral control negative limit in charge pressure regulation
	Safety margin integral control negative limit in charge pressure regulation
	Salety margin meghal control mint in charge pressure regulation
	Opper control error theshold for negative adjustment
LDEIAPS	Control error threshold for last positive tracking
LDEIAU	Lower control error threshold for negative adjustment
LDHIA	Hysteresis for the charge pressure regulation integral adaptation curve
LDIATA	Integral limit correction as a function of intake air temperature (Tans) in charge pressure regulation
	PID control
LDMXNN	Maximum tracking limit for negative control adaptation in charge pressure regulation
LDMXNP	Maximum tracking limit for positive control adaptation with range change in charge pressure
	regulation
LDRQ0S	Control parameter Q0 in steady-state operation for charge pressure regulation PID control
I DRQ1ST	Control parameter Q1 in steady-state operation (integral coefficients) for charge pressure regulation
	PID control
	Full load detection threshold in charge pressure regulation
	Sheed threshold for integral limits adaptation
	Samle noint distribution for charge pressure regulation
	Sample point distribution for filtered speed gradient (ngfi) in charge pressure regulation
	Sample point distribution for charge pressure regulation
	Sample point distribution for charge pressure regulation
SINIVIUOLDUVV	Sample point distribution for charge pressure regulation
	Sample point distribution for charge pressure regulation
	Sample point distribution for charge pressure regulation
	Sample point distribution for charge pressure regulation
SPS08LDUW	Sample point distribution for charge pressure regulation
SPUU8LDUB	Sample point distribution for charge pressure regulation
STAU8LDUB	Sample point distribution for charge pressure regulation
STLDIA1	Sample point 1 for charge pressure regulation adaptation characteristic curve
STLDIA2	Sample point 2 for charge pressure regulation adaptation characteristic curve
STLDIA3	Sample point 3 for charge pressure regulation adaptation characteristic curve
STLDIA4	Sample point 4 for charge pressure regulation adaptation characteristic curve
STV10LDSW	Sample point distribution for charge pressure regulation
SY_TURBO	Turbocharger system constant
TLDIAN	Debounce time for tracking negative integral adaptation
TLDIAPN	Debounce time for tracking positive integral adaptation
TVLDMX	Upper duty cycle limit for charge pressure regulation
UMDYLDR	Cut-off threshold for dynamic charge pressure regulation
Variable	Description
B ADRLDRA	Condition flag for deleting charge pressure adaptation values by deleting memory errors
BLDDY	Condition flag for dynamic mode in charge pressure regulation
BLDIMXA	Condition flag for adaptation limiting value in charge pressure regulation integral control
B LDIMXN	Condition flag for negative correction Idimxr
B LDIMXP	Condition flag for positive correction Idimxr
B LDR	Condition flag for activating charge pressure regulation
B LDVL	Condition flag for full load charge pressure regulation
B PWF	Condition flag for power fail
B_STLDW	Condition flag for sample point change in charge pressure regulation adaptation
DFP I DRA	Intake manifold error: boost deviation
F I DRA	Errorflag: charge pressure control deviation
	Integration of mass air flow from engine start to maximum value
IRBGOF W	Offset for the LDRPID integral controller limit dependent on speed gradient
	Charge pressure regulation control error (desired value – measured value)
	Current value for the minimum limit in charge pressure regulation integral control
	Adaptation correction for the maximum limit in charge pressure regulation integral control
I DIMXAK W	Current corrected limit in charge pressure regulation integral control
	Maximum limiting value (corrected reference value) in charge pressure regulation integral control
	Actual reference value for the maximum limit in charge pressure regulation integral control
	Actual value of the maximum limit value in charge pressure regulation integral control

LDITV_W	Charge pressure regulation duty cycle from the integral controller (word)
LDPTV	Charge pressure regulation duty cycle from the proportional controller
LDRDTV	Charge pressure regulation duty cycle from the derivative controller
LDRKD_W	Charge pressure regulation (derivative control parameter)
LDRKI_W	Charge pressure regulation (integral control parameter)
LDRKP_W	Charge pressure regulation (proporational control parameter)
LDTV	Charge pressure regulation duty cycle
LDTVR_W	Charge pressure regulation duty cycle from the controller
NGFIL	Filtered speed gradient
NMOT	Engine speed
PLGRUS_W	Basic charge pressure desired value
PLSOL	Target (desired) charge pressure
PLSOLR_W	Relative target (desired) charge pressure (charge pressure regulation)
PLSOL_W	Target (desired) charge pressure
PU	Ambient pressure
PVDKDS	Pressure before the throttle pressure sensor
RLMAX_W	Maximum achievable cylinder charge with turbocharger
RLSOL_W	Target (desired) cylinder charge
STLDIA	Current sample point for charge pressure regulation adaptation
TMST	Engine starting temperature

See the *funktionsrahmen* for the following diagrams: Irshk-Irshk: function overview Irshk-Irhkini: initialization of the post-catalyst lambda control Irshk-Irhkebg: general switch conditions post-catalyst lambda control Irshk-Irhkla: determination of the error signal to lambda level Irshk-dlahksm: selection of fr-synchronous lambda averaging/filtering by average value/linearizing Irshklambda directly Irshk-Irhkebp: cylinder bank-specific readiness switch Irshk-Irhkb1: PI controller post-catalyst with activation condition, cylinder bank 1 Irshk-Irhkb2: PI controller post-catalyst with activation condition, cylinder bank 2 Irshk-Irhkeb: cylinder bank-specific enable of proportional and integral components, cylinder bank 1 Irshk-Irhkeb2: cylinder bank-specific enable of proportional and integral components, cylinder bank 2 Irshk-Irhkip: PI controller, cylinder bank 1 Irshk-Irhkip2: PI controller, cylinder bank 2 Irshk-Irhkip3: PI controller, cylinder bank 3 Irshk-Irhkip3: PI controller, cylinder bank 4 Irshk-Irhkip3: PI controller, cylinder bank 5 Irshk-Irhkip3: PI controller, cylinder bank 5 Irshk-Irhkip3: PI control

Function Description

Control with the post-catalyst probe is superimposed on the pre-cat lambda control.

Control action on the pre-catalyst control is via the delta-lambda-correction variables dlahi_w and dlahp_w.

Post-catalyst Control:

This is switched off by setting bit 0 in word CLRSHK code to 1 (FALSE).

PI Control Action

Post-catalyst lambda control is achieved with a PI controller. Control action via the proportional component dlahp_w will be immediate because it has no "memory" of the correct sign with respect to the control position after a change of lambda probe voltage due to enrichment or enleanment by the delta-lambda intervention.

Via the integral component, post-catalyst control LRSHK is able to compensate, to a large extent, for exhaust gas deterioration, caused by a shift of the steady-state probe characteristic.

The LRSHK calculation is carried out continuously on the lambda level. This requires that the probe voltage ushk_w is linearized via the characteristic LALIUSH (lamsonh_w). A similar linearization is performed with the voltage target value USRHK (lamsolh_w). The pseudo-value lamsonh_w can continue to work via the project-specific codeword CLRSHK

(a) directly (\rightarrow default in continuous pre-catalyst control, intervention is possible every 10 ms)

(b) via a PT1 filter (\rightarrow project-specific)

(c) fr-synchronous averaged (\rightarrow default for two-point control, as the ratio can be added only before the fr-jump)

because lamhm_w will supply the control error dlashkm_w.

By assessing the characteristic curves KDLASHKP and KDLASHKI, the control error dlashkm_w can be corrected separately according to the catalyst properties before the calculation of the P and I components.

The resulting skewed control errors dlashkp_w or dlashki_w are now weighting with KPLRHML = f (ml) of the proportional component dlahp_w, or by weighting with KILRHML = f (ml) of the integral component dlahi_w.

In the case of aged catalysts, control oscillation of the pre-catalyst control imprinting itself on the postcatalyst probe voltage behaviour which, if proportional intervention is left unchanged, can lead to postcatalyst control oscillations. Moreover, catalyst ageing, which is associated with a decrease in the oxygen storage capacity, the need for the P action in post-catalyst control is less important. Therefore, in a further multiplication by the weighting factor from the characteristic PLRHAV = f(avkatf), the proportional component of the post-catalyst control is revoked for aged catalysts.

Effect on LRSHK of the Lambda Probe Diagnostics

Post-catalyst control takes over the additional delta Lambda offsets (dlahki_w \rightarrow pre-catalyst actual value offset, dlahkp_w \rightarrow pre-catalyst target value offset) from the former control in LRS 15.40. The magnitude of the intervention dlahi_w is a measure of probe ageing and is used in the diagnosis of lambda probe aging. A symmetric increase in the probe response time cannot be detected by dlahi_w.

Control Threshold from Map KFUSHK

If the post-catalyst probe reports that the mixture is, for example, too lean, dlahp_w will be negative according to the selected control direction and dlahi_w will become smaller. Thus, there is an enrichment until ushk goes back up to the control threshold usrhk. In contrast to the pre-cat control, a map is provided for the post-catalyst control threshold. Via the choice of threshold, a slight load or speed-dependent lambda offset can be achieved.

If catalyst diagnostics are required in the short test B_fakat = TRUE is switched to the threshold USRHKFA.

LRSHK Control Dynamics

The superimposed control is significantly slower than the control applied before the catalyst. Since at low air mass flow rates (low load or engine speed point), the post-catalyst probe voltage as a general rule can exhibit more erratic behaviour and oscillations, following low probe voltages it should not be evaluated so strongly here. The time constant of the post-catalyst control depends on the air mass flow rate ml (\rightarrow characteristic KILRHML). At high air mass flow rates, the integration rate should be selected higher as a general rule.

Activation Conditions

If post-catalyst control LRSHK is disabled, the learned integrator value dlahi_w up to that point is the output of the post-catalyst controller. Also, when stopping the engine over the value of the continuous RAM.

The activation conditions for the proportional and integral components are defined differently and are indicated by the bits B_lrhkp and B_lrhk.

The following conditions apply for the proportional component:

When pre-catalyst control readiness ($B_{Ir} = 1$) is detected, LRSHK is enabled after the delay time TBLRH. This is only useful for lambda target values (lamsons_w = 1) of the pre-catalyst control.

Post-catalyst regulation is only activated above a certain catalyst temperature threshold (tkatm > TKATMLRH) and the operational readiness of the post-catalyst probe (B_sbbhk) is activated.

The following additional conditions apply for the integral component:

Thus, the integrator is only disabled when nmot or rl is in the ranges (NLRHU \leq nmot \leq NLRHO and RLRHUN(nmot) \leq rL \leq RLRHON(nmot)). The characteristic curves RLRHUN and RLRHON make it possible to select engine speed-dependent rL-limits on the control range. This allows the control range to be defined so that the operational ranges which give rise to incorrect adaptation of post-catalyst control are delineated. This can happen at operating points where, for example, air mass flow rates are too low.

After the overrun fuel cut-off, the catalyst is saturated with oxygen. The post-catalyst probe voltage will retain small, lean values for a certain time. In this phase, the system deactivates the section LRSKA of the post-catalyst control via bit B_Irka.

After the end of catalyst clear out, post-catalyst control is prohibited until the air mass MLNKAX has passed through the catalytic converter.

If the bit B_tehb corresponding to "tank venting high loading" is set, the integral component of LRSHK is deactivated because the integrator would learn wrong values in this case. The proportional component remains active in this case since it helps to reduce exhaust problems.

In addition, a series of diagnostic errors deactivates post-catalyst control.

Dynamic Overshoot of the Control Threshold after Catalyst Clear Out

After the end of catalyst clear out, the post-catalyst probe voltage oscillates significantly higher than the nominal value of 600 mV for typically 5 to 30 s. The probe voltage attains values of 750-800 mV. The overshoot depends on the catalytic properties. With catalyst types that do not exhibit this behavior, the excess can be applied away.

SCHEMATIC

The probe voltage characteristic ushk and the status bits B_sa (boost cut-off) and B_lrka (catalyst clear out) are illustrated schematically in the diagram above.

Thus the "time" (air mass MLNKAX) during which the post-catalyst control is prohibited can be kept as short as possible, the probe voltage behaviour after catalyst clear over time is described by a dynamic increase in the target value. The input of a quick PT1 filter is populated with LASHKAB and governed by the time constant ZLASHKAB to 0. The time constant is derived from the adopted course of the probe voltage.

Through this function it is possible, in cases in which the catalyst clear out function has not been successful, or a situation in which the pre-catalyst control condition gives rise to a lean post-catalyst probe voltage, the probe voltage can be raised via LRSHK.

Application Notes

LRSHK Application Procedure:

Codeword CLRSHK

The codeword CLRSHK was introduced in order influence the treatment of the adaptation value dlahi_w within the application. The importance of the individual control bits in CLRSHK are described under the block comments.

Sensible combinations, in decimal, are listed below:

CLRSHK = odd: LRSHK is deactivated

CLRSHK = 16: dlahi_w will erase memory errors when reset with the value DLAHIINI, otherwise default status for LRSHK

CLRSHK = 24: dlahi_w is reset with the value DLAHIINI when the engine starts

Parameter LRSHK

The application of LRS must be completed

4 x 4 grid points are provided for map KFLASOHK:

Suggestion: mot: 1000, 1800, 2400 & 3000 rpm

rL: 14, 42, 56 & 70%

- Lower control limit e.g. NLRHU = 1200 rpm

Characteristic curve RLRHUN is dependent on n

- Upper control limit e.g. NLRHO = 3000 rpm

Characteristic curve RLRHON is dependent on n

The characteristic curves RLRHUN and RLRHON are strongly project-dependent. However, a characteristic with four sample points, which lie between NLRHU and NLRHO should be sufficient.

- TKATMLRH is chosen so as to control catalyst temperatures >300°C. There is a catalyst temperature model (module ATM) which yields catalyst temperatures, tkatm.

- TBLRH is dependent on the catalytic properties and should be at least 1 second to be selected. Via this label, the time that elapses after switching on the lambda control until the post-catalyst probe signal is correlated against the pre-catalyst control scheme is defined.

- KILRHML curve describes the rate of integration of the air mass in %/s.

Reference points for example engine with ml load: 450 kg/hr

ml: 8, 28, 88, 200, 400 kg/hr

KILRHML: 0.0015, 0.003, 0.0045, 0.006 and 0.0075 /s

Characteristic Curves KDLASHKI and KDLASHKP

The control error corresponding to project-specific lambda probes and catalytic converter properties can be defined via the characteristic curves KDLASHKI and KDLASHKP. So firstly, inaccuracies of the probe voltage linearization (LALIUSH) are corrected and secondly, the emissions characteristics of catalytic converters are considered.

Application of the Proportional Component in the LRSHK PI-Control Scheme:

The effective action of the proportional component of the post-catalyst control system is calculated as follows:

dlahp_w = dlashkl × KPLRHML (ml) × PLRHAV (avkatf)

The influence of catalyst ageing is included as a multiplier in the calculation (RAM cell dlahp_w) using a factor from the characteristic curve PLRHAV, as described above. For a new catalytic converter (avkatf at 0.0), PLRHAV is populated with the value 1.0. With increasing amplitude ratio (as the catalyst ages), PLRHAV is returned to 0.0.

The choice of parameters is determined mainly by the properties of the catalyst. When we ask questions in the application development function, please contact us.

Application of the Parameter MLNKAX:

The overshoot voltage of the lambda probe after the end of the catalyst clear out function is a project-specific phenomenon, which disrupts the LRSHK. Therefore, LRSHK should be blocked until the air mass MLNKAX has been enforced. Since there is no experience (especially with the new catalyst types), the definition of the parameters should be consulted in the responsible function for LRSKA.

Application of the Parameter KILRHML:

During application of the map KFLASO in module LRS, the post-catalyst control integration rate will be set by means of the curve KILRHML so that one sample point of the integrator control stroke dlahi_w of ± 0.03 to ± 0.04 is measured. During measurement, the air mass at the respective operating point is noted. After completion of the application of map KFLASO, the set values from KILRHML are plotted against air mass. The air mass is obtained from a scatter plot. The actual curve KILRHML in LRSHK is obtained by averaging the point cloud.

For more detailed information, please refer to the general application note in the module covering Continuous Lambda Control.

Abbreviations

Parameter	Description
CLRSHK	Codeword to enable LRSHK and select initialization
DLAHINI	Initial value of the integrator dlahi in LRSHK, Bank 1
DLAHINI2	Initial value of the integrator dlahi in LRSHK, Bank 2
KDLASHKI	Characteristic curve of dlashkm, weighting factor for integral component in LRHK, Bank 1
KDLASHKI2	Characteristic curve of dlashkm, weighting factor for integral component in LRHK, Bank 2
KDLASHKP	Characteristic curve of dlashkm, weighting factor for proportional component in LRHK. Bank 1
KDLASHKP2	Characteristic curve of dlashkm, weighting factor for proportional component in LRHK. Bank 2
KFUSHK	Probe voltage target value for post-catalyst control (instead KFUSRHK for Variantenk.)
KILRHML	Integral component for LRSHK
KPLRHML	Proportional component for LRSHK
LALIUSH	Lambda linearization, post-catalyst probe, Bank 1
LALIUSH2	Lambda linearization, post-catalyst probe, Bank 2
LALIUSRH	Lambda linearization, post-catalyst probe, target value, Bank 1
LALIUSRH2	Lambda linearization, post-catalyst probe, target value, Bank 2
LASHKAB	Initial value for dynamic target value increase (lamsolh) in LRHK
LRHIMN	Minimum limit of the integrator constant in LRHK
LRHIMX	Maximum limit of the integrator constant in LRHK
MLNKAX	Mass air threshold for activation readiness LRSHK integral component
NLRHO	Upper speed limit for post-catalyst control
NLRHU	Lower speed limit for post-catalyst control
PLRHAV	Catalyst ageing weighting factor for the proportional component in LRHK, Bank 1
PLRHAV2	Catalyst ageing weighting factor for the proportional component in LRHK, Bank 1
RLLRHON	Characteristic curve of nmot, rL upper control limit for the post-catalyst controller
RLLRHUN	Characteristic curve of nmot, rL lower control limit for the post-catalyst controller
RLLRHUFA	rL control limit for post-catalyst control functional requirement B_fakat
TBLRH	Deactivation time for post-catalyst control before it is enabled by pre-catalyst control
TKATMLRH	Switch threshold for model temperature for post-catalyst lambda control
USRHKFA	Probe voltage target value for control post-catalyst at function requirement, B_fakat
ZLASHKAB	Time constant for the dynamic speed regulation. Target value increase (dlasohkab) in LRHK
ZLASOHML	PT1-filter time constant for the pseudo post-catalyst lambda
Variable	Description
AVKAIF	Filtered amplitude ratio laath/laaty, Bank 1
AVKATE2	Filtered amplitude ratio laath/laatv, Bank 2
B_DLAHINI	Condition flag: initialization of the LRSHK integral component, Bank 1
B_DLAHINI2	Condition flag: initialization of the LRSHK integral component, Bank 2
B_EDKVS	Condition flag: actual adaptation error thresholds exceeded, Bank 1
B EDKVS2	Condition flag: actual adaptation error thresholds exceeded, Bank 2
B_FAKAT	Condition flag: monitoring function requirement catalyst
B_FALSH	Functional requirement condition post-catalyst lambda probe, Bank 1
B_FALSH2	Functional requirement condition post-catalyst lambda probe, Bank 2
B_LR	LREB Condition: pre-catalyst lambda control, Bank 1
B_LR2	Condition: pre-catalyst lambda control, Bank 2
B_LKHK	Condition: post-catalyst lambda control, Bank 1
B_LKHK2	Condition: post-catalyst lambda control, Bank 2
B_LKHKB	Condition: post-catalyst lambda control, bank specific parameters, Bank 1
B_LKHKB2	Condition: post-catalyst lambda control, bank specific parameters, Bank 2

B LRHKG Condition: bank independent condition post-catalyst lambda control Condition: enable condition proportional component post-catalyst lambda control, Bank 1 **B_LRHKP B_LRHKP2** Condition: enable condition proportional component post-catalyst lambda control, Bank 2 Catalyst-clearing condition for stereo lambda control, Bank 1 **B** LRKA **B_LRKA2** Catalyst-clearing condition for stereo lambda control, Bank 2 Condition: lambda-control bit set if additional amplitude sign change **B_LRSSP** Condition: critical dropout rate available **B MDARV B_PWF** Power fail condition **B_SBBHK** Condition flag: post-catalyst lambda probe ready Bank 1 B_SBBHK2 Condition flag: post-catalyst lambda probe ready Bank 2 B ST Start condition Tank ventilation with high loading condition **B_TEHB** C_FCMCLR System status: error erasing memory C INI ECU initialization condition DLAHI W Integral component of LRSHK, Bank 1 DLAHI2 W Integral component of LRSHK, Bank 2 DLAHINI2 W Initialization value for integral component LRSHK, Bank 2 DLAHINI W Initialization value for integral component LRSHK, Bank 1 DLAHKAB W Dynamic elevation of the pseudo post catalyst lambda target value, Bank 1 DLAHKAB2 W Dynamic elevation of the pseudo post-catalyst lambda target value, Bank 2 DLAHP_W Proportional component of LRSHK, Bank 1 DLAHP2_W Proportional component of LRSHK, Bank 2 DLASHKI W Delta Lambda weighted for integral component LRSHK, Bank 1 DLASHKI2_W Delta Lambda weighted for integral component LRSHK, Bank 2 DLASHKM_W Post-catalyst delta lambda control (actual value fr-synchronously averaged), Bank 1 DLASHKM2_W Post-catalyst delta lambda control (actual value fr-synchronously averaged), Bank 2 DLASHKP_W Delta-lambda weighted for proportional component LRSHK 5.30, Bank 1 DLASHKP2_W Delta-lambda weighted for proportional component LRSHK 5.30, Bank 2 E HSH Error flag: post-catalyst lambda probe heating, Bank 1 E_HSH2 Error flag: post-catalyst lambda probe heating, Bank 2 E_HSV Error flag: pre-catalyst lambda probe heating, Bank 1 E_HSV2 Error flag: pre-catalyst lambda probe heating, Bank 2 E KAT Error flag: catalytic conversion, Bank 1 E_KAT2 Error flag: catalytic conversion, Bank 2 E LASH Error flag: post-catalyst lambda probe ageing, Bank 1 Error flag: post-catalyst lambda probe ageing. Bank 2 E LASH2 E LM Error flag: main load sensor E_LSV Error flag: pre-catalyst lambda probe, Bank 1 Error flag: pre-catalyst lambda probe, Bank 2 E_LSV2 E_SLS Error flag: secondary air system, Bank 1 E_SLS2 Error flag: secondary air system, Bank 2 E_TES Error flag: fuel tank breather system E_TEVE Error flag: fuel tank breather valve end stage, Bank 1 Error flag: fuel tank breather valve end stage, Bank 1 E_TEVE2 LAHKMZ Status byte of the machine: fr-synchronous averaging pseudo lambda post-catalyst, Bank 1 LAHKMZ2 Status byte of the machine: fr-synchronous averaging pseudo lambda post-catalyst, Bank 2 Pseudo-linearized lambda post-catalyst, PT1 filtered, Bank 1, Word LAMHF_W Pseudo-linearized lambda post-catalyst, PT1-filtered, Bank 2, Word LAMHF2 W fr-synchronously averaged pseudo post-catalyst lambda value measured by the Nernst probe, Bank 1 LAMHM W LAMHM2_W fr-synchronously averaged pseudo post-catalyst lambda value measured by the Nernst probe, Bank 2 Pseudo post-catalyst lambda target value, Bank 1 LAMSOLH_W LAMSOLH2 W Pseudo post-catalyst lambda target value, Bank 2 LAMSONH_W Pseudo post-catalyst lambda value measured with Nernst probe (word), Bank 2 LAMSONH2_W Pseudo post-catalyst lambda value measured with Nernst probe (word), Bank 2 LAMSONS W Lambda target value based on location of lambda sensor LAMSONS2_W Lambda nominal value based on location lambda sensor Bank2 Air mass flow ML MLNKA W Catalyst air mass after clear out, Bank 1 MLNKA2_W Catalyst air mass after clear out, Bank 2 ML_W Filtered air mass (Word) NMOT Engine speed PERCNT_W Number of 10 ms steps for fr-synchronous lamsolh averaging, Bank 1 PERCNT2_W Number of 10 ms steps for fr-synchronous lamsolh averaging, Bank 2 Relative air charge RL R_T10 10 ms time frame R_T100 100 ms time frame SY_STERHK System constant condition: stereo post-catalyst system System constant condition: stereo pre-catalyst system SY STERVK TKATM Catalyst temperature from model Bank 1 TKATM2 Catalyst temperature from model Bank 2

Lambda probe voltage (4.88 mV/LSB) post-catalyst, Bank 1
Lambda probe voltage (4.88 mV/LSB) post-catalyst, Bank 2
Actual post-catalyst lambda signal control threshold, Bank 1
Actual post-catalyst lambda signal control threshold, Bank 2
Cycle flag: post-catalyst lambda probe ageing, Bank 1
Cycle flag: post-catalyst lambda probe ageing, Bank 2

MDBAS 8.30 Function Description

See the *funktionsrahmen* for the following diagrams:

MDBAS MDBAS (included in this translation) MDBAS ZW NWS

The optimum torque values mioptl1_w at lambda = 1 are calculated with the help of the map KFMIOP. This torque is corrected for the influence of lambda by multiplying by the lambda efficiency (etalab). The lambda efficiency is obtained from the characteristic line ETALAM. Multiplying by the ignition angle efficiency gives the basic torque mibas. This corresponds to the indicated torque that is set when the combustion takes place with the basic lambda (lambas) and the base ignition angle (zwbas).

The optimum ignition angle at lambda = 1 is determined from the map KFZWOP. The sub-function ZW_NWS describes the influence on the optimum ignition angle of an existing camshaft timing adjustment. The equipment options are none, binary (on or off), or continuously variable camshaft timing adjustment. In the case of binary adjustment, the factor fnwue governs continuous switching between the maps KFZWOP and KFZWOP2. In the case of continuous camshaft timing adjustment which depends on the camshaft overlap angle (wnwue) an ignition angle correction is added to KFZWOP. The determined optimum ignition angle (zwoptl1) again applies for lambda = 1. The currently applicable camshaft timing adjustment type is defined by the system constant SY_NWS in SW generation:

SY_NWS = 0: no camshaft timing adjustment SY_NWS = 1: binary camshaft timing adjustment SY_NWS = 2: continuously variable camshaft timing adjustment SY_NWS > 2: not defined.

The software is translated conditionally, i.e. there is only one variant in the EPROM. SY_NWS is not in the EPROM and can not be applied.

Additive corrections depending on lambda, the exhaust gas recirculation rate and engine temperature are included. The resulting ignition angle (zwopt) now forms the basis for the ignition angle efficiency calculation. The basic ignition angle efficiency is calculated using the characteristic ETADZW, the input value is obtained from the difference between zwopt and zwbas. This is followed by an averaging of the basic efficiencies across all cylinders and the result is the base efficiency etazwbm.

The ignition angle correction for exhaust gas recirculation operation can through the code word CWMDBAS either always be included or only included if B_agr = true. In the case of permanent inclusion, ignition angle jumps are avoided by switching off B_agr.

MDBAS 8.30 Application Notes

Exhaust gas recirculation should be inactive throughout all these measurements! Data input requires the following measurements to be made:

1. Operation at Lambda = 1: Ignition angle fine tuning on an engine dynamometer at lambda = 1 with the engine at normal operating temperature at the following operating points:

Engine speed = 500, 750, 1000, 1250, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000 & 6500 rpm (if possible) Relative cylinder charge = 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100%

Ignition angle fine turning begins at the ignition angle at which maximum torque is achieved (i.e. maximum brake torque, MBT) if not to drive at the knock limit. The ignition angle should now be retarded in steps of 4.5° crank angle until the latest mobile firing angle is achieved. The following data must be recorded at each point: engine speed (nmot), relative cylinder charge (rl), lambda, clutch torque and ignition angle.

2. Lambda Dependence Ignition angle fine tuning through lambda at the following measuring points:

Engine speed = 1000, 2000, & 3000 rpm Relative cylinder charge = 30, 50 & 70 % Lambda = 0.80, 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15 & 1.20

Measurements as above.

3. Drag Torque

The drag torque (engine braking) must be obtained at all the measuring points specified in 1. Measure on an engine dynamometer with no ignition and with the engine at its normal operating temperature.

4. Evaluation

Evaluation of the results takes place at K3/ESY4-Hes.

Parameter	Description
AGRRMAX	Maximum possible exhaust gas recirculation rate
CWMDBAS	Codeword to take account of the ignition angle correction for exhaust gas recirculation operation
DZWNWSUE	Delta ignition angle depending on camshaft angle
DZWOLA	Lambda dependence of the optimum ignition angle relative to lambda = 1
DZWOM	Temperature dependent offset of the optimum ignition angle
ETADZW	Ignition angle efficiency dependence on delta ignition angle
ETALAM	Lambda efficiency
KFDZWOAGR	Offset of the optimum ignition angle with exhaust gas recirculation operation
KFMIOP	Optimum engine torgue map
KFZWOP	Optimum ignition angle
KFZWOP2	Optimum ignition angle variant 2
Variable	Description
AGRR	Exhaust gas recirculation rate
B_AGR	Exhaust gas recirculation one condition
DZWOAG	Exhaust gas recirculation rate dependent ignition angle correction of the optimum ignition angle
DZWOL	Lambda dependent ignition angle correction of the optimum ignition angle
DZWOTM	Temperature dependent ignition angle correction of the optimum ignition angle
ETALAB	Lambda efficiency without intervention based on optimum torque at lambda
ETATRMN	Minimum value of the cylinder barrel efficiency
ETAZWB	Ignition angle efficiency of the basic ignition angles
ETAZWBM	Mean ignition angle efficiency of the basic ignition angles
FNWUE	Weighting factor for inlet camshaft overlap
LAMBAS	Basic lambda
MIBAS_W	Indicated basic torque
MIOPTL1_W	Optimum indicated torque at lambda = 1
MIOPT_W	Optimum indicated torque
NMOT W	Engine speed
RL_W	Relative cylinder charge (word)
R_SYN	Synchro-raster
SY_NWS	System constant for camshaft control: none, binary (on/off) or continuous
ТМОТ	Engine (coolant) temperature
WNWUE	Camshaft overlap angle
ZWBAS	Basic ignition angle
ZWOPT	Optimum ignition angle

FB MDBAS 8.30 (Calculation of the Basic Parameters for the Torque Interface)

See the *funktionsrahmen* for the following diagrams:

mdfaw-mdfaw	MDFAW overview
malaw-peachar	Sub-function PEDCHAR: Infoilie pedal characteristic
	Sub-function MRFMA. Maximum relative driver requested torque
maraw-amiwns	charge mode
mdfaw-dmfabeg	Sub-function DMFABEG: change limitation for the driver's requests
mdfaw-sawe	Sub-function SAWE: change limitation during overrun fuel cut-off & reinstatement
mdfaw-filsawe	Sub-function FILSAWE: filter for change limitation during overrun fuel cut-off & reinstatement
mdfaw-dashpot	Sub-function DASHPOT: change limitation during negative load change (dashpot)
mdfaw-fildash	Sub-function FILDASH: filter for dashpot
mdfaw-zdash	Sub-function ZDASH: filter time constant for dashpot
mdfaw-ebdash	Sub-function EBDASH: switching conditions for dashpot
mdfaw-mismeus	Sub-function MISMEUS: change limitation during fast torque intervention for operating mode
	changeover
mdfaw-lsd	Sub-function LSD: Change limitation during positive load changes (load change damping)
mdfaw-fillsd	Sub-function FILLSD: filter for load change damping
mdfaw-zlsd	Sub-function ZLSD: filter time constant for load change damping
mdfaw-pt2fil	Sub-function PT2FIL: PT2-filter
mdfaw-eblsd	Sub-function EBLSD: switching conditions for load change damping
mdfaw-mdbg	Sub-function MDBG: torque change limitation
mdfaw-mifal	Sub-function MIFAL: driver requested torque for the cylinder charge path
mdfaw-fwmifal	Sub-function FWMIFAL: excessive increase factor for driver requested torque for the cylinder
	charge path during positive load changes
mdfaw-bits	Sub-function BITS: Saving of the significant bits in the flag byte mdfaw_bits

MDFAW 12.260 Function Description

The duty of this function is to calculate the driver's requested torque as a function of accelerator pedal position (wped_w) and cruise control output (mrfgr_w). Separate values are provided for cylinder charge and ignition influences (mifal_w, mifa_w).

The throttle pedal characteristic is defined by maps, where through pedal position and engine speed, a factor (relative torque) is stored to help scale indexed torque between the minimum and maximum. The relative driver's requested torque can have values greater than 100% (pedal crossover). For reverse gear, a separate map is available that can be used on vehicles with automatic transmission. To enhance driving comfort, a change in the driver's requested torque limit can take place under certain conditions (load changes, overrun fuel cut-off and reinstatement, transition from part load to idle and vice versa. See subfunction DMFABEG).

The idle condition (B_II) is set when the relative driver's requested torque drops below the threshold MRFALLU and is reset when the threshold MRFALLO is exceeded. The cruise control condition (B_fgr) is set when the cruise controller output is greater than the output of the pedal characteristic. The integral component of the idle control (dmllri_w) is included in the driver's request.

The change limitation for the driver's requested torque (sub-function DMFABEG) is used to improve ride comfort and overrun fuel cut-off and smooth resumption of positive and negative load changes. With that, a DT1-element filtered torque loss (dmverl_w) is added behind the change limitation around jumps in the clutch torque to damp the connection or disconnection of load.

Overrun fuel cut-off/reinstatement

Via a PT1-filter, down-regulation of the target torques starting from the actual torque at zero takes place by overrun fuel cut-off; smooth resumption by up-regulation of the target torques starting from mizwmn_w to mimin_w. The filter time constants for up-regulation and down-regulation can be chosen independently of each other. One more time constant is made available for hard resumption and leaving idle (under light throttle). The initialization of the filters on the overrun fuel cut-off to the actual torque is needed to avoid a jump in torque on enabling of the ignition angle interventions. The filtering is, or is not cancelled:

- During active dashpot,

- For active load shock absorption,
- In the test laboratory
- On a steep negative speed gradient (uncoupling of thrust or throttle),
- When the clutch is actuated (configurable via CWDMFAB)
- mrfa gradient at higher threshold (important during hard resumption and when leaving the idle),
- Upon reaching the basic ignition angles.

<u>Dashpot</u>

The change limitation for negative load changes (dashpot) is implemented using a PT1-filter with gear and speed-dependent time constant. The PT1-filter runs at a negative gradient of the unfiltered driver's requested torque. The dashpot is triggered when the difference between the filtered and unfiltered output value exceeds a clutch-dependent and torque-dependent threshold, and cruise control is not engaged. The trigger also always occurs at the transition to idle. The PT1-filter triggered by the dashpot is initialized with the actual torque in order to avoid a jump in torque during ignition angle interventions. The dashpot is terminated when the difference between filtered and unfiltered value falls below a gear-dependent threshold. As long as the dashpot is active, there will not be any overrun fuel cut-off (see function %BBSAWE).

The driver's desired torque for the cylinder charge influence mifal_w is calculated by a dashpot with its own PT1-filter that is initialized when the unfiltered driver's desired torque drops below the trigger level. In this way, a steep initial drop is reached, which leads to the rapid closing of the throttle. Then a soft change is made to the target value. The dashpot can be active only when:

- The general dashpot-enable is done via CWDMFAB Bit1,
- There is no commitment to overrun fuel cut-off,
- Load shock absorption is not active,
- There is the speed signal,
- The minimum speed is exceeded for dashpot,
- The clutch is not pressed,
- Start end is reached,
- The response is greater than zero,
- ASR intervention is not active,
- The cylinder charge is greater than the minimum charge.

Load Shock Absorption

The change limitation during positive load changes is realized with the help of a PT2 filter whose damping and time constant are gear- and speed-dependent. The PT2 filter runs with a positive gradient of the unfiltered driver's requested torque. Load shock damping is triggered when the difference between unfiltered and filtered output value exceeds a gear- and clutch torque-dependent threshold. The PT2 filter is triggered when the load shock absorption is initialized with the actual torque or a speed-and gear-dependent initial value, to avoid a jump in torque upon enabling of the ignition angle interventions and to influence the response behavior. The load shock damping is terminated when the difference between the filtered and unfiltered value drops below a gear-dependent threshold.

The driver's desired torque for the cylinder charge influence mifal_w with active load shock damping is calculated from a map which depends on the desired torque for the ignition influence (mifa_w) and on the gear, which is a limitation on the unfiltered target. Thus, the cylinder charge can be controlled so that there is no significant ignition angle intervention in order to set the desired torque curve.

The load shock damping can be active only when

- Load shock damping is generally enabled via CWDMFAB Bit 0,
- There is no idle

- For vehicles with CVT transmission, the torque gradient limitation is not active and the torque converter clutch is not open,

- The speed signal is present
- The minimum speed for load shock absorption is exceeded,
- The clutch is not actuated
- Cruise control is not engaged,
- Speed and speed limits are not active,
- End of start conditions is reached,
- The gear is greater than zero,
- No traction control intervention is active.

The PT2 filter is implemented with two integrators and feedback. There is also the possibility that the filter is initialized with a given value (iwflsd_w) if the condition B_iflsd is set.

MDFAW 12.260 Application Notes

<u>CWDMFAB</u>

Bit 0 0: Load shock damping deactivated

- 1: Load shock damping enabled
- Bit 1 0: Dashpot deactivated
- 1: Dashpot enabled
- Bit 2 0: Load shock damping with B_gwhs inactive
 - 1: Load shock damping with B_kupplv inactive
- Bit 3 0: Dashpot with B_gwhs inactive
- 1: Dashpot with B_kupplv inactive
- Bit 4 0: Overrun fuel cut-off/reinstatement filter with B_kuppl active 1: Overrun fuel cut-off/reinstatement filter with B_kuppl inactive
- Bit 5 0: Dashpot and load shock damping even with traction control intervention enabled
- 1: Dashpot and load shock damping with traction control intervention inactive
- Bit 6 0: Dashpot triggering independently of B_II 1: Dashpot triggering on positive edge of B_II
- Bit 7 0: Load shock damping and dashpot triggering via threshold inactive, until cruise control intervention 1: Load shock damping and dashpot triggering via threshold also possible during cruise control intervention

CWMDFAW

- Bit 0 0: Initialization of migef_w when reinstating with miistoar_w
- 1: Initialization of migef_w when reinstating with 0 (for sequential reinstatement)
- Bit 1 0: Initialization of mifal_w with dashpot with mivbeb_w
 - 1: Initialization of mifal_w with dashpot with mibdp_w dmdpo_w
- Bit 2 0: Load shock damping with B_kupplv or B_gwhs inactive
 - 1: Enable the load and shock damping independent of B_kupplv and B_gwhs

KFPEDL and KFPEDR must contain smaller values than KFPED at the same pedal value and the same speed so that the torque monitoring only depends on KFPED.

Parameter	Description
CWDMFAB	Codeword ECU switch for change limitation
CWMDFAW	Codeword for %MDFAW
DMDPOSCH	Delta torque dashpot triggering in the shift operation
DMDPUG	Delta torque dashpot end
DMIFLSD	Delta torque for initialising filter load shock damping
DMISMEUS	Delta indexed torgue for change limitation by B mismeus
DMLSDUG	Delta torque end load shock damping
DMRFAWEN	Threshold mrfa-gradient for deactivating PT1-filter during reinstatement
DRLMINDP	Offset on rimin for switching off dashpot
FGMIFAL	Weighting factor for elevation via KFWMIFAL
FGZLSD	Weighting for reduction via KFZLSD
FKFPEDV	Factor for interpolation between the two pedal maps
FKZDPTM	Correction factor time constant dashpot
FLRMIFAL	Factor for driver requested torque cylinder charge path in low range
FLRZDASH	Factor for dashpot time constant im low range
FLRZLSD	Factor for load shock damping-time constant in low range
FZDA1SCH	Dashpot time constant correction factor in shift operation
FZDA2SCH	Dashpot time constant correction factor at small clutch torque in shifting operation
KFDLSD	Damping PT2-filter load shock damping
KFDMDPO	Delta torque dashpot triggering
KFDMLSDO	Delta torque triggering load shock damping
KFDMLSDS	Delta torque triggering load shock damping after shifting operation
KFMIFABG	Delta torque for gradient limitation
KFMIFALS	Indexed driver requested torque for cylinder charge path during load shock damping
KFMILSD	Indexed torque initial value for load shock damping
KFPED	Relative driver requested torque from throttle pedal
KFPEDL	Relative driver requested torque at low speeds
KFPEDR	Relative driver requested torque from throttle pedal for reverse gear
KEWMIFAL	Excessive increase factor for cylinder charge path during load shock damping
KFWZLSD	Reduction factor for time constant load shock damping
KFZDASH	Time constant PT1-filter dashpot
KFZDASHZ	Time constant PT1-filter dashpot at small clutch torque
KFZLSD	I me constant P I 2-filter load snock damping
	Maximum value mite w for torque change limitation
	Indexed driver requested tergue for evinder elegan path with estive and direction
	indexed driver requested torque for cylinder charge path with active gradient limitation

MDFAW 12.260 Driver's Requested Torque

MKFADPN Clutch torgue for changeover of dashpot-filter time Clutch torque for changeover of dashpot-filter time for air conditioning MKFADPN1 **MKMIFABG** Clutch torque for activating the torque change limitation Upper idle threshold of the relative driver requested torques MRFALLO MRFALLU Lower idle threshold of the relative driver requested torques **MRFAVLN** Full load detection threshold for the relative driver requests Threshold speed gradient for overrun fuel cut-off/reinstatement filter NGFSAWE SNM12MDUW Sample point distribution for engine speed Sample point distribution for throttle pedal angle SWP16MDUW SY ASG System constant: automated manual transmission present SY_BDE System constant: petrol direct injection SY_CVT System constant: continuously variably transmission present **TDMFBSA** Time constant PT1-filter during overrun fuel cut-off TDMFBWE Time constant PT1-filter during smooth reinstatement Filter time constant during target speed increase (continuously variably transmission) TDMFNSG TDMFWEMI Filter time constant during hard reinstatement TDMLSDS Time after clutch actuation with modified load shock damping trigger TVFSAWE Delay time for resetting B fil VDASH Minimum speed for dashpot VLSD Minimum speed for load shock damping Variable Description Condition: continuously variable transmission B CVT Condition: dashpot change limitation active B DASH **B_DASHV** Condition: dashpot delay B_DP Condition: dashpot value greater than driver request (= 1) Condition: dashpot permission **B_EDP B_ELSD** Condition: load shock damping permission Condition: functional requirement: general speed increase **B_FAAN** Condition: cruise control (Tempomat) active B FGR B_FIL Condition: PT1-filter for overrun fuel cut-off/reinstatement active Condition: gear change by manual switch **B_GWHS** B_IFLSD Condition: initialising filter load shock damping B KO Condition: compressor enabled **B KUPPL** Condition: clutch actuated **B** KUPPLV Condition: delayed clutch actuation B LL Condition: idle **B** LLVFGR Condition: idle forbidden by vehicle speed limiter Condition: Intermediate clutch for low range switch-off **B** LOWRA Condition: load shock limitation without driver request (=1) B_LS B_LSD Condition: positive load shock damping active **B_MGBGAKT** Condition: torque gradient limitation active Condition: torque gradient limitation active **B MGBGET B_MIFABG** Condition: mifa limitation **B_MISMEUS** Condition: torque change limitation by B_smeus **B MRPEDASG** Condition: changeover driver requested torque from AMS **B_MRPFA** Condition: zeroing of mrped_w because of general speed increase **B_NMAX** Condition: speed limiter active **B** NMOT Condition: engine speed: n > NMIN **B** NSGET Condition: torque requirement for CVT: position the pulley cone B_SA Condition: overrun fuel cut-off Condition: overrun fuel cut-off standby **B_SAB** Condition: overrun fuel cut-off standby or enable **B** SABFG Condition: end of start conditions reached **B** STEND B TDMLSDS Condition: time after clutch actuation with modified load shock damping trigger **B** TMISMEUS Condition: triager for torque filtering B mismeus B VL Condition: full load **B_VMAX** Condition: speed limiter active Condition: vehicle stopped **B VNULL B_WKAUF** Condition: torque converter open **B_ZWSCH** Condition: ignition angle for stratified charge mode active DLSD W Damping PT2-filter in load shock damping DMBEBL_W Delta torque for triggering load shock damping DMDPO_W Delta torque dashpot triggering DMDPU_W Delta torque dashpot end DMGBEG_W Delta torque for gradient limitation Required torque change from idle control (integral component) DMLLRI_W DMLSDO_W Delta torque on triggering load shock damping DMLSDU W Delta torque at end of load shock damping DMLWHS W Delta torque during load alternation between homogeneous and stratified charge modes Threshold mrfa-gradient for deactivating PT1-Filter during reinstatement DMRFAWE_W

MDFAW 12.260 Driver's Requested Torque

DMVERL W Torque loss after DT1-Filter Factor for interpolation between the two pedal maps FKFPED FWMIFAL Excessive increase factor in cylinder charge path load shock damping FWZLSD Reduction factor time constant load shock damping FZDASH Factor time constant dashpot GANGI Actual gear Initialising value for filter load shock damping IWFLSD W MDFAW_BITS Flag byte for %MDFAW MDGRAD_W Torque gradient limiting through the transmission MDSLWHOM_W Load alternation torque loss in the homogeneous mode MDSLW_W Torque loss: load alternation MDVERL W Engine torque loss Indexed target engine torque traction control for fast intervention MIASRS W MIBAS_W Indexed basic torque MIBDP_W Indexed target engine torque dashpot MIBLSD_W Limited indexed torque for load shock damping MIFA Indexed driver requested engine torque MIFABG_W Gradient-limited driver requested torque MIFAL_W Indexed driver requested torque for torque coordination on the charge path MIFA_W Indexed driver requested engine torque MIGEF_W Gefiltertes indexed driver requested torque MIISTOAR_W Actual torque without anti-judder component Maximum permissible indexed torque MIMAX W MIMINHOM_W Minimum torque for the homogeneous charge mode MIMIN_W Minimum engine torque Indexed driver requested torque after / change limitation MINBEG W MISMEUS_W Indexed torque during change limitation B_mismeus Indexed torque before change limitation, upper limit of mimax_w MIVBEB_W Indexed driver requested torque before maximum limit for homogeneous charge mode MIVBEGVH W MIVBEGV_W Indexed driver requested torque before maximum limit MIVBEG_W Indexed driver requested torque before change limitation MIZWMN W Indexed engine torgue at the latest igniton angle MKFADPN W Clutch torgue for changeover dashpot-filter time Clutch torque from limited driver's request MKFANB_W MKFA_W Driver requested torque (clutch) after change limitation MRFAMXAS W Relative driver requested torque maximum value from automated manual transmission MRFAMX_W Relative driver requested torque maximum value Relative driver requested torque from cruise control and throttle pedal MRFA W MRFGR W Relative torque requirement from cruise control MRPEDASG W Relative driver requested torque from automated manual transmission MRPEDL_W Relative driver requested torque from the throttle pedal for less speed MRPEDS W Relative driver requested torque from the throttle pedal for greater speed MRPED_W Relative driver requested torque from the throttle pedal Filtered speed gradient NGFIL_W NMOT W Engine speed RLMINDP_W Minimum relative cylinder charge for dashpot switch off Minimum permitted relative load RLMIN_W RL_W Relative air charge (word) TMOT Engine coolant temperature VFZG Vehicle speed Normalised throttle pedal angle WPED W Time constant PT1-filter dashpot ZDASH1 W ZDASH2_W Time constant PT1-filter dashpot at small clutch torque ZDASH W Time constant dashpot ZLSDV W Time constant PT2-filter load shock damping before reduction ZLSD W Time constant PT2-filter load shock damping

MDFUE 8.50 Function Description

See the *funktionsrahmen* for diagram mdfue:

The torque variable milsol_w, which is set on the charge path at the basic ignition angle and basic efficiency is converted into torque variable misopl1_w, which corresponds to the optimum torque at lambda = 1. The map KFMIRL provides the cylinder charge which corresponds to this operating point.

This cylinder charge is limited to a minimum permitted value rlmin_w at which the condition B_mdmin is set for idle control which then stops the integrator. In the case of a turbocharger, there is a limit on the maximum permitted cylinder charge rlmax_w. This variable does not exist for naturally-aspirated engines! The result is the desired cylinder charge rlsol_w.

Supplement to the application interface:

CWRLAPPL = 0: Function as before: rlsol generated from the limited KFMIRL. CWRLAPPL bit 1 =1: rlsol_w = RLSOLAP CWRLAPPL bit 2 =1: rlsol_w = wped_w × FWPEDRLS

Application Notes

The map KFMIRL is the inverse of map KFMIOP in the function MDBAS (*it is understood that this is not a direct arithmetic inverse, but is intended to mean that the functions on the x, y & z axes are complementary*). See MDBAS for application notes.

Parameter CWRLAPPL	Description Code word: default risol w during applications phase
FRLMNHO	Correction factor for rimin via altitude
FWPEDRLS	Factor for direct entry to the default rlsol from wped (application)
KFMIRL	Map for calculating target cylinder charge
KFRLMN	Minimum cylinder charge in firing mode
KFRLMNSA	Minimum rl during overrun fuel cut-off
RLSOLAP ZKDRLSOL	I arget cylinder charge for application calibration purposes Time constant for drlsol-integrator
Variable	Description
B_MDMIN	Condition flag: minimum achievable indexed torque reached
B_SA	Condition flag: overrun fuel cut-off active
C_INI	ECU initialisation condition
DRLSOLF_W	Filtered change in target cylinder charge
DRLSOL_W	Change in target cylinder charge
ETALAB	Lambda efficiency without intervention with respect to the optimum torque at lambda = 1
ETAZWBM	Average ignition angle efficiency at the basic ignition angles
	Allitude correction factor Driver's requested tergue for cylinder charge path
MISOR 1 W	Target air torque, back-calculated from lambda – 1 and zwont
NMOT	Engine speed
NMOT W	Engine speed (word)
RLMAX_W	Maximum achievable cylinder charge from the turbo
RLMIN_W	Minimum permitted rl
RLSOL_W	Target cylinder charger
RLTEDTE_W	Relative cylinder charge from the fuel tank breather valve determined from DTEV
R_T10	Time graticule of 10 ms
SY_TURBO	System constant: turbocharger
TMOT	Engine temperature
WPED W	Normalised throttle pedal angle

See the *funktionsrahmen* for the following diagrams:

mdkog-main	Main function overview
mdkog-bbmdein	Sub-function BBMDEIN: active torque intervention conditions
mdkog-bbzwein	Sub-function BBZWEIN: active ignition angle intervention conditions
mdkog-mdbeg	Sub-function MDBEG: limit of the indicated torque
mdkog-mdbeg-diag	Sub-function MDBEG_DIAG: connection of the torque limit to the diagnosis
mdkog-mdabws	Sub-function MDABWS: stalling

MDKOG 14.70 Function Description

Coordination of the Requested Engine Torques

Through the torque coordination calculation, the indexed desired engine torque (misol_w) is used to calculate the fade out stage and/or the ignition angle adjustment. The externally-requested indexed torques from the cruise control (miasrs_w) and transmission protection (migs_w) and the internal torque requirements (e.g. driver requested torque, maximum engine speed or maximum load) will be converted into an indexed desired engine torque (misolv_w) via either a minimum or maximum range.

The desired torque for the ignition path is dependent on the enable condition B_zwvz (cf. BBMDEIN):

- When ignition angle interventions are enabled, mizsolv_w is calculated as follows: The upper limit of the desired torque, misolv_w, is given by the product of optimal internal torque (including lambda influence) and ignition angle (miopt_w × etazwb), then the torque requirements of the idle control dmllr_w (only proportional and differential components) and the anti-judder feature, dmar_w are added.

- When ignition angle interventions are not required, the basic torque mibas_w is used as the desired torque which depends only on the stipulated ignition and mixture-application efficiencies. The anti-judder feature intervention is also considered in this case.

Sub-function BBMDEIN: Active Torque Intervention Conditions

In addition, via the traction control torque intervention, the condition flag B_msr is set so that overrun fuel cutoff is prohibited (see %MDRED). During cruise control intervention, the condition flag B_asr to cylinder suppression is possible (see %MDRED). The condition flag B_mdein is used to disable the misfire detection (see %DASE) and enable the anti-judder feature or idle speed control (for B_mdein = 0). The condition flags B_zwvz and B_zwvs are responsible for enabling the torque adjustment through ignition.

- B_zwvz is set when the time frame level detects the need for an intervention. This is the case at all operating points which require a torque reserve, i.e. idle, catalyst heating, short journeys and for the dashpot driveability functions, load shock attenuation, filtering for overrun fuel cut-off and short journeys. When the clutch is also immediately released to avoid revving the engine. All external intervention is detected by comparing mifa_w and misol_w.

An ignition angle enable can also be made via the code word CWMDKOG, when the desired the cylinder charge corresponds to the minimum cylinder charge. In addition, if the difference between the actual cylinder charge and the minimum cylinder charge is less than the delta value to be applied, data input to the code word for the ignition angle can be enabled.

- B_zwvs is set when either a timeframe intervention is submitted or a torque influence from the anti-judder feature is required. The desired value is not then switched to misol_w in the function %MDZW (torque influence on ignition), however, the influence is activated.

Sub-function MDABWS: Stalling

Should the engine speed during torque reduction through cruise control or transmission protection fall under NASNOTTM, miext is immediately set equal to MDIMX so that the two operations are prohibited. NASNOTKL is a function of engine temperature, tmot.

Sub-function BBZWEIN: Active Ignition Angle Intervention Conditions

see BBMDEIN

Sub-function MDBEG: limit of the indicated torque

The two torque variables misolv_w and mizsolv_w are limited to the maximum indicated torque miszul_w (from module MDZUL). This is to ensure that monitoring in level 2 only becomes active when the desired (and possibly limited) torque is not converted correctly into an actual torque. The data input to KFMIZU will be aligned to the level 2 permitted torque. Particularly in the application phase this can prevent an unwanted torque monitoring response. By noting the value of B_mibeg it is possible to detect whether a limitation of the desired torque has been made.

To test the data monitoring, there is a counter cmibeg_w that counts the number of active limitations. The counter cmibeg_w is incremented with each rising edge of B_mibeg. The counter is not active when the driver releases the throttle pedal or the maximum value is reached (MAXWORD = 65,535). The value is cached and only an error path enable or a power failure resets it.

Sub-function MDBEG_DIAG: Connection of the Torque Limit to the Diagnosis

This function MDBEG_DIAG is part of the EGAS monitoring concept (level 1). The desired torque MDBEG is limited to a maximum permissible torque, miszul_w. If this limit is active, the bit B_mibeg is set. In certain operating conditions (e.g. very cold engine and idle), this level-1-limit will be active, but only for a short time. If the limit B_mibeg is active for a longer time (e.g. 10 minutes), there might be a fault in the system and a diagnostic entry is made.

MDKOG 14.70 Application Notes

Typical values:

MDIMX = 99.6%;

NASNOTKL

Engine temperature/°C	-30	0	30	60
NASNOT	1500	900	600	600

The engine speed threshold NASNOT must not be larger than 2550 rpm.

DELRL < 2% THDMB = 1 sec CWMDKOG = 2

Bit	7	6	5	4	3	2	1	0
CWMDKOG	*	*	*	*	Note 4	Note 3	Note 2	Note 1

Note 1. Ignition angle enable with rlsol = rlmin

Note 2. Ignition angle enable with B_mibeg

Note 3. Ignition angle enable with $rI - rImin_w \le DELRL$

Note 4. !B_mibegl kill data input

Parameter	Description
CDCMDB	Codeword CARB: torque limitation desired torque
CDKMDB	Codeword Client: torque limitation desired torque
CDTMDB	Codeword Tester: torque limitation desired torque
CLAMDB	Codeword Error Class: torque limitation desired torque
CWMDKOG	Codeword: MDKOG: ignition angle retardation via vacuum limitation
CWTEZW	Codeword: ignition angle intervention via fuel tank breather valve check
CWZWVMX	Codeword: ignition angle intervention via speed limitation
DELRL	Delta relative cylinder charge for enabling ignition angle intervention
FFTMDB	Freeze frame table: torque limitation desired torque
MDIMX	Maximum indexed engine torque
NASNOTKL	Characteristic curve for stall protection speed threshold
THDMB	Healing debounce time of the entry error in long-term torque limitation
TMVER	Debounce time detection of a long-term torque limitation
TSFMDB	Error summation period: torque limitation desired torque
TVLDSZW	Duty cycle ignition angle enable via recharge effect

TVMIBEG Debounce time for ignition angle enable via torgue limitation BLOKNR DAMOS source for block number Condition flag: cruise control active B ASR **B** BEMDB Condition flag: tape end functions requirement torque limitation **B** BKMDB Condition flag: torque monitoring (long-term limitation) active Condition flag: cancellation of long-term torque limitation **B** CLMDB Condition flag: dashpot-adjustment limit active B DASH B FIL Condition flag: PT1-filter for overrun fuel cut-off/reinstatement active **B** FTMDB Condition flag: error input from tester for torque limitation B_KH Condition flag: catalyst heating **B_KUPPLV** Condition flag: delayed clutch actuation B KW Condition flag: catalyst keep warm **B** LDSUA Condition flag: charge air recirculation valve active (open) Condition flag: idle **B_LL B** LLREIN Condition flag: idle control active B LSD Condition flag: positive load change damping active **B** MDEIN Condition flag: torque intervention active **B** MDMIN Condition flag: minimum achievable indexed torque achieved **B** MGBGET Condition flag: torque gradient limitation active **B_MIBEG** Condition flag: torque limitation active Condition flag: torque limitation cylinder charge path active **B** MIBEGL Fehlertyp min.: torque monitoring long-term limitation **B** MNMDB **B MSR** Condition flag for torque slip control Error type: maximum permissible desired torque is exceeded permanently **B** MXMDB **B** NPMDB Implausible error: torque monitoring long-term limitation **B** PWF Condition flag: power fail B SA Condition flag: overrun fuel cut-off Error type: torgue monitoring long-term limitation **B_SIMDB** Condition flag: end of start conditions achieved **B_STEND B** ZWGET Ignition angle intervention through transmission intervention **B_ZWNGET** Ignition angle intervention not through transmission intervention Condition flag: for quick exit of ignition angle intervention in the torque interface **B_ZWVS** B ZWVZ Condition flag: for ignition angle intervention in the torque interface **B_ZWVZVB** Condition flag: for ignition angle intervention in the torque interface for limitation Counter for active limitations of the internal torques CMIBEG W DFP MDB ECU internal error path number: torque monitoring long-term limitation DMAR W Delta engine speed (anti judder) Demanded torque change for idle control (P & D components) DMLLR W DMRKH Torque reserve for catalyst heating DMRKT W Torque reserve for short journeys Torque reserve for idle control DMRLLR W DMZMS W Difference between the indexed desired torque and the allowed desired torque **ETAZWB** Ignition angle efficiency of the basic ignition angles E MDB Error flag: torque monitoring long-term limitation MIASRL W Indexed desired engine torque (cruise control), slow intervention MIASRS W Indexed desired engine torque (cruise control), fast intervention MIBAS W Indexed basic torque MIBEG W **Torque limit** MIBGR W Indexed desired torque for input-dependent clutch torque limitation MIEXTV W For external demanded torgue for stall protection MIEXT_W For external (cruise control, transmission protection, etc.) demanded indexed engine torque MIFAB W Limited indexed driver's desired torque MIFA W Indexed driver's desired torque MIGS W Indexed desired engine torgue for transmission protection, fast intervention MILRES W Torque requirement for air path with all reserves MIMAX W Maximum achievable indexed torque MIMSR W Indexed desired engine torque, traction control Torque requirement of the speed limiter MINMX W MIOPT W Optimum indexed torque MISOLP_W Indexed desired torque for torque limitation, local variable MISOLV_W Indexed resulting torque for torque limitation MISOL W Indexed resulting desired torque

MISZUL_W	Maximum possible indexed torque
MITEBG_W	Torque target for minimum filling fuel tank breather
MIVMX_W	Indexed desired torque for speed control
MIZSOLV_W	Indexed resulting desired torque for ignition angle intervention for torque limitation
MIZSOL_W	Indexed resulting desired torque for ignition angle intervention
NASNOTTM	Speed threshold for stall protection as a function of engine speed
NMOT	Engine speed
RLMIN_W	Minimum possible relative cylinder charge
RLSOL_W	Desired cylinder charge
RL_W	Relative cylinder charge (word)
SFPMDB	Error path status: torque monitoring, long-term limitation
TMOT	Engine temperature
WPED_W	Normalised throttle pedal angle
Z_MDB	Cycle flag: torque limitation, long-term limitation

MDZW 1.120 Calculating Torque at the Desired Ignition Angle

MDZW 1.120 Function Description

When calculating the desired ignition angle there are three different cases:

- 1. Torque influence on the ignition angle active $(B_zwvs = 1)$
- 2. Switching off torque influence on the ignition angle (B_zwvs = 0, dmaufr_w> 0)
- 3. Torque influences inactive (B_nozwe = 1)

1. Active Torque Intervention

The enable condition (B_zwvs) condition is set and the switch-off condition for the ignition angle intervention (B_nozwe) is false. The desired ignition angle is calculated from the torque requirement for the ignition path mizsol_w. The perturbation ramp (dmaufr_w) is zero. The requested torque mizsol_w is converted into the desired efficiency etazws. This is done by dividing by the optimum torque, which is calculated by multiplying miopt_w with the efficiency etazaist. The desired efficiency (etazws) is converted via the inverse ignition angle efficiency characteristic DZWETA into a delta-ignition angle (dzws). The difference between the optimum ignition angle zwopt and dzws gives the desired ignition angle zwool.

2. Switching off the Torque Influence

When switching off the torque intervention (B_zwvz = 1 \rightarrow 0, see %MDKOG), the desired torque mizsol_w can jump to a higher value. This positive torque perturbation must be prevented for driveability reasons. This is done by eliminating the requirement B_zwvz. A perturbation ramp dmaufr_w is reset, which initialises the amplitude of the jump and runs down to zero with a speed-dependent rate. This ramp is subtracted from the input mizsol_w and ensures a smooth transition into a state without any intervention within the timeframe. In this state B_zwvs = false, the switch-off condition for the ignition angle intervention B_nozwe is set but only after the ramp.

A special case is the anti-judder feature intervention, in which B_zwvs, but not B_zwvz is set. When the antijudder torque requirement is eliminated from input mizsol_w, there is no jump, so that the switch-off ramp in this case is not necessary.

3. Torque Influences Inactive

In this state, no requirement is active ($B_zwvs = 0$) and the ramp dmaufr_w is screened. The switch-off condition for the ignition angle intervention B_nozwe is set. In this case, the desired ignition angle zwsol for the ignition is not taken into account (c.f. %ZUE) so the calculation can be omitted.

MDZW 1.120 Application Notes

The values are in DMAUFN are preset to give a slope of approximately 5%/sec for all engine speeds.

Parameter	Description
DMAUFN	Delta torque control after engine torque intervention
DZWETA	Inverse delta ignition angle efficiency
Variable	Description
B_NOZWE	Condition flag: no ignition angle intervention on the engine torque structure
B_ZWVS	Condition flag for fast external ignition angle intervention on the torque interface
B_ZWVZ	Condition flag for ignition angle intervention on the torque interface
DMAUFR_W	Delta "up regulation" torque
DZWS	Delta ignition angle between zwopt and zwsol
ETAZAIST	Actual cylinder suppression efficiency
ETAZWS	Desired ignition angle efficiency
MIBAS_W	Indexed basic torque
MIOPT_W	Optimum indexed torque
MISOL_W	Indexed resulting desired torque
MIZSOL_W	Indexed resulting desired torque for ignition angle intervention
MIZWMN_W	Indexed engine torque at the latest ignition angle
NMOT W	Engine speed
REDIST	Actual reduction stage
R SYN	Synchronisation grid
ZWOPT	Optimum ignition angle
ZWSOL	Desired ignition angle for torque intervention

RKTI 11.40 Function Description

ti_w represents a physical value of injection time which is correct also during start conditions. During start the physical value of ti_b1, ti_b2 and ti_tvu_w has to be corrected by the user by a factor of 8, because start quantisation of ti_b1 is internally corrected by dividing by 8 to store large ti-values into a 'word' variable instead of a 'long' variable.

Please see the *funktionsrahmen* for the following diagrams:

- 1. Battery correction of injection time for injection valves, calculation frkte (fuel mass into injection time)
- 2. Calculation of ubatt correction of injector time for injectors

3. Correction for injected fuel mass if the reference pressure of the fuel rail pressure controller is not manifold pressure (i.e. with a returnless fuel rail).

- 4. Calculation of the injection time during start conditions
- 5. Calculation of the injection time after end of start conditions

This function calculates the effective injection time before fine tuning (tevfa_w, tevfa2_w) from the relative fuel mass (rk_w , $rk2_w$) and the factor frkte. With an ideal fuel supply system, tevfa_w + tvu_w, tevfa2_w + tvu_w should result in lambda of 1.0 in the combustion chamber, with pilot control to lambda = 1.0 and neutral values of all mixture adaptations.

In practice, a deviation in lambda may occur due to injector nonlinearities or pulses in the fuel system. This deviation is corrected using the map FKKVS as a function of engine speed (nmot_w) and effective injection time (tevfa_w or tevfa2_w). The corrected effective injection time is te_w or te2_w. By adding the battery voltage correction for the injectors, the actuation time is calculated thus: ti_b1 = te_w + tvu_w. The function ACIFI controls the actuation times for bank 1 (ti_b1 or ti_b2) are forwarded to CIFI. In order to achieve the long injection times required during starting conditions, the quantization times ti_b1, ti_b2 are increased by a factor of 8 which thus expands the range to 1677.696 ms. The same applies for the additive quantity ti_tvu_w.

Therefore, a 16 bit value is required for the interface to the function ACIFI. This is important for runtime reasons for normal operation. During start conditions, VS100 measurements of the physically indicated injection time are multiplied by a factor of 8. The resolution during start conditions for ti_b1, ti_b2 and ti_tvu_w is 25.6 microseconds, whereas in normal operation it is 3.2 microseconds.

The RAM cells ti_w and ti_2_w show the physically correct injection time during both start conditions and also normal operation with a resolution of 16 microseconds. The resolutions are valid for a 20 MHz processor.

The minimum injection time TEMIN or TEMINVA is set when outputs B_va = true, B_temin = true or B_temin2 = true. This serves to lock out the lambda control. The threshold value TEMINVA is differentiated from TEMIN with a cold engine when the wall film degradation is not properly emulated by the thinning-delay because te_w limits TEMIN. At higher speeds it is possible that the available theoretical maximum injection time is not sufficient to obtain the required target torque. Therefore, an injection time timx_w that is larger than the maximum possible injection time timxth_w is deployed until the desired torque is withdrawn and timx_w is not larger than timxth_w. For this purpose, the control error dtimx_w is assigned to a PI controller. When the controller is active, the output controlled variable mitibgr_w represents the desired torque. When the controller is inactive, mitibgr_w receives the value 100%. The desired torque in %MDBGRG is obtained by initializing with mifab_w and mitibgr_w. In order to avoid jumps in the nominal torque, the integrator of the integral component is initialized with mifab_w.

The controller is activated as soon as timx_w exceeds the speed-dependent threshold timxth_w. The controller remains in operation until timx_w < timxth_w AND mitibgr_w > mifab_w. See Applications Information.

RKTI 11.40 Application Notes

Calculation of the constant KRKTE:

$$\begin{array}{ll} \mathsf{KRKTE} &= (\rho_{\mathsf{air}} \times \mathsf{V}_{\mathsf{hcyl}}) \div (100 \times 14.7 \times 1.67 \times 10^{-5} \times 1.05 \times \mathsf{Q}_{\mathsf{stat}}) \\ &= (50.2624 \times \mathsf{V}_{\mathsf{hcyl}}) \div \mathsf{Q}_{\mathsf{stat}} \end{array}$$

Where:

 ρ_{air} = air density (1.293 g/dm³ at 0°C and 1013 mbar) V_{hcyl} = Volume of a cylinder hub in dm³ Q_{stat} = injector constant with *n*-heptane 1.05 = injector correction factor for petrol 14.7 = Stoichiometric air quantity at lambda = 1.0 1.67×10⁻⁵ = conversion factor minutes to milliseconds.

Calculation of the correction for fuel supply systems where the reference pressure of the fuel pressure regulator is ambient pressure:

 $FRLFSDP = \sqrt{[pdr_evmes/(pdr_akt + (pu - ps))]}$

Where:

pdr_evmes = absolute pressure in the fuel system before the injectors at the injector constant (Qstat) generally 3 bar

pdr_akt = actual fuel system pressure

pu = ambient pressure

ps = intake manifold pressure

For systems that take their reference pressure from the intake manifold pu - ps = 0 is used in the calculation above.

It then applies to the entire relationship FRLFSDP = $\sqrt{(pdr_evmes/pdr_akt)}$

For a fuel pressure of 3 bar, the results for FRLFSDP (where dpus = pu - ps) are as follows:

Naturally-asp	irated Engine	Turbocharg	ged Engine
dpus/mbar	FRLFSDP	dpus/mbar	FRLFSDP
0	1.0000	-1200*	1.2990
100	0.9837	-1000	1.2247
200	0.9682	-800	1.1678
300	0.9535	-600	1.1180
400	0.9393	-400	1.0742
500	0.9258	-200	1.0351
600	0.9129	0	1.0000
700	0.9005	200	0.9682
800	0.8885	400	0.9393
		600	0.9129
		800	0.8885

*Boost pressure = 1800 mbar, ambient pressure = 600 mbar

For consistency reasons, 11 sampling points for vacuum and turbo are used with the turbo-values.

In the charge sampling and injection application in returnless fuel systems via the code word for the reference pressure for the fuel pressure regulator (CWPKAPP), the constant PSAPES (intake manifold pressure for injection application) is used as a substitute value where the modelled intake manifold pressure ps_w has not been applied. Thus the manifold pressure can be set directly with a VS100 processor. With the VS20 processor, the pressure PSAPES can be changed with an adjustment factor between 0 and 2 via the RAM cell vsfpses (pses_w = PSAPES × vsfpses).

The initial value for PSAPES is 1013 mbar. If this value (in conjunction with a factor of 2 from vsfpses) does not define the maximum manifold pressure for turbocharged engines with VS20, the one-off value of PSAPES must be increased with VS100.

Initialization:

Map size in program development nmot \times tevfa_w = 10 \times 10

FKKVS: Sample points

Speed	800	1400	2000	2600	3200	3800	4400	5000	5600	6200	RPM
Tevfa_w	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5	ms
Value	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	

The characteristic field FKKVS corrects errors in the fuel system (pulses in returnless fuel systems) The map size of FKKVS can be extended to about nmot \times tevfa_w = 10 \times 10 auf 16 \times 10. This is especially important to simplify the application for proportional systems. The speed sample points should match the number and values of the map KFPRG in the function BGSRM.

TEMIN: 1 milliseconds

TEMINVA: 1 milliseconds so that overall, the same TEMIN is active

TEMINVA: 0 milliseconds so that it is inactive when the engine is cold and thinning delay B_va = true, te to TEMIN seated and so that the wall film is not broken down properly.

ti-resolution values are valid for a 20 MHz processor frequency. Otherwise thery must be converted thus: 20 MHz / (current processor frequency [MHz]).

Start:

ti_b1, ti_b2 25.6 microseconds. Measurements from VS100 must be multiplied by a factor of 8. ti_tvu_w 25.6 microseconds. Measurements from VS100 must be multiplied by a factor of 8. ti_w, ti2_w 16 microseconds. te_w, te2_w not available.

Normal:

ti_b1, ti_b2 3.2 microseconds. ti_tvu_w 3.2 microseconds. ti_w, ti2_w 16 microseconds. te_w, te2_w 3.2 microseconds.

<u>First inputs:</u> ZTSPEV = 240 seconds

TVTSPEV				
Etvmodev [°]	-20	0	100	120
tvsp w [ms]	0	0	0	0

<u>DMIL</u> CWDMIL

Bit 0 true: controller activated Bit 0 false: controller deactivated Bit 1 true: inputs B_ba and B_bag both active KMITIBGR = 15 %/ms*s PVMITIBGR = 0.8 %/ms

Explanation of Variables

Variable	Description
CWDMIL	Code word ti-continuous wave control RKTI
CWPKAPP	Application code word for the fuel pressure regulator pressure reference
FKKVS	Correction factor for the fuel supply system
FRLFSDP	Injection correction RLFS
KMITIBGR	On-slope factor for the integration of dtimx_w through torque limitation
KRKTE	Conversion of relative fuel mass rk to effective injection time te
PSAPES	Intake manifold injection for application
PVMITIBGR	Proportional gain factor for torque limitation through continuous wave injection
SY_STERVK	System constant condition: stereo before catalytic converter
TEMIN	minimum TE
TEMINVA	minimum TE at VA
TVTSPEV	Correction of the injection time depending on evtmod
TVUB	Voltage correction
ZTSPEV	Time constant for filtering evtmod taking tvu-control into account
B BA	Acceleration enrichment condition (indicator)
------------	--
B BAG	Strong acceleration enrichment condition
B ENIMITI	Integrator release condition for torgue limitation through continuous wave injection
B STEND	End of start condition
B TEMIN	TEMIN-limiting condition active, Bank 1
B TEMIN2	TEMIN-limiting condition active. Bank 2
B VA	Wall-film thinning delay condition (indicator)
DPUS W	Delta intake manifold pressure environment
	Difference between theoretical and maximum injection time
EVTMOD	Intake valve temperature models (temperature model)
EVTMODEV	Filtered value of evtmod taking into account the formation of tvu w
FRKTE W	Conversion factor relative fuel mass rk to effective injection time te
FTEK2 W	Correction factor for effective injection time. Bank 2
FTEK W	Correction factor for effective injection time
MIFAB W	Limited indexed driver-desired torque
MITIBGRI W	I-component for torgue limitation via ti-control during continuous injection
MITIBGRP W	P-component for torgue limitation via ti-control during continuous injection
MITIBGR W	Torque limitation via ti-control during continuous injection
NMOT	Engine speed
NMOT W	Engine speed
PS W	Manifold Absolute Pressure (Word)
PUW	Ambient pressure
RK2 W	Relative fuel mass, Bank2
RK W	Relative fuel mass
TE2 W	Effective injection time Bank2 (word)
TEVFA2 W	Effective injection time before trim (word)
TEVFAKGE W	Addressing map FKKVS with effective injection time before fine-tuning
TEVFA_W	Effective injection time before trim (word)
TE W	Effective injection time (word)
TI2_W	Injection time for cylinder 2 (word)
TIMXTH_W	Theoretical maximum injection time
TIMX_W	Maximum injection time
TI B1	Injection time for injectors in Bank1
TI_B2	Injection time for injectors in Bank2
TI_TVU_W	Battery voltage-dependent injection time correction CPU quantization
TI_W	Injection time
TVSP_W	Injection delay time depending on evtmod
TVU_W	Battery voltage correction
UB	Battery voltage
VSFPSES	Adjustment factor for intake manifold pressure for the injection application

SLS 88.150 Function Description

See the *funktionsrahmen* for the following diagrams:

sls-sls	Function overview
slson	Conditions for switching on secondary air
slsoff	Conditions for switching off secondary air
sls-slp	Conditions for setting the bits of SLP
sls-bmsl	Calculating the secondary air mass
sls-dichte	Calculating the correction factors for the secondary air mass
sls-bslpdyn	Description of the dynamic of the secondary air pump
sls-bslsoff	Description of the secondary air dynamic in the exhaust system
sls-bfmlssl	Calculation of enrichment due to secondary air
sls-bkt	Secondary air adaption/short journey
sls-e-slpe	E_SLPE: error flag secondary air pump
sls-e-slve	E_SLVE: error flag secondary air valve
sls-e-slpanst	Evaluation of the SLP-output stage
sls-slvanst	Evaluation of the SLV-output stage
sls-z-sls	Cycle flag: secondary air control (cylinder bank 1)
sls-z-sls2	Cycle flag: secondary air control (cylinder bank 2)
sls-init	Initialisation
sls-swoff	ECU delay

Function Description

Secondary air control is coordinated by the sub-function BBKHZ in overview module AK 1.10 and consists of the following sub-functions:

Switching Conditions:

The secondary air system is activated (i.e. B_SLS, B_SLV and B_SLP are all equal to 1) when B_kh = 1 and the imlpr-threshold IMLSLMN is crossed when the engine start temperature TMST lies in the window TMSSLU<tmst<TMSSLO and the intake air temperature tans is in the window TASLU<tans<TASLO. This allows the temperature range for switching on the secondary air system with respect to catalyst heating to be restricted, for example, secondary air pumps overheating or switching on to avoid a frozen secondary air system.

By setting bit 0 of the code word CWSLS, secondary air can already be enabled at start in the restricted temperature window TMSSLSTU<tmst<TMSSLST, for example in designs with thermal reactor, the self-ignition already ensured at engine start. However, the pre-condition is that this is voltage-slope compatible, i.e. the battery voltage is greater than UBSLSTMN.

Alternatively, by setting bit 1, the secondary air system can only be activated if the speed threshold VSLS is exceeded. This is common in secondary air designs in which the exothermic reaction is first ignited in the catalytic converter. Control of the secondary air pump relay is achieved by $B_slp = 1$ with the minimum holding time TSLPMN to prevent opening of the relay during pump starting current. Opening of the secondary air valve ($B_slv = 1$) can be delayed with respect to the pump by the time TVSLON. The secondary air valve is opened when $B_sls = 1$. For diagnostic purposes, the secondary air pump and the secondary air valve can be controlled additionally with the flags B_dspe , B_dslfa and B_dslp4 .

In twin ECU designs, the secondary air valves or secondary air pumps are activated when it is detected by one of the two ECUs that conditions B_slp or B_slv are met. The two bits B_slp and B_sls are then fed to each ECU over the CAN bus to ensure that the desired effects are initiated on both sides of the same arrangement.

Switch-off/termination Conditions:

The secondary air is terminated:

- When the threshold IMLSLMX is crossed (B_slpoff = 1)
- Via a debounce time TSLABB after the end of start conditions (B_stend = 1)
- When the maximum air mass threshold MLSLMX is crossed
- When the pressure difference DPSLV is too low to keep the vacuum-actuated secondary air valve open
- When the battery voltage is too low (UBSLMN)
- When there are output stage errors E_slpe, E_slve, or
- When the catalyst-heating termination condition is met (B_khab = 1).

The secondary air is not activated in the first place if:

- the output stage error has already been switched on
- A high electrical system voltage is detected (as UBSLMX) from a boost-start, a twin battery system or battery emergency power.

After switching off the secondary air pump, the secondary air valve can be closed after the time delay TVSLOFF. This is possibly required for engine designs in which the secondary air effects an improvement in fuel atomization in the combustion chamber. Closing the secondary air valve later can dampen the load-diminishing effect due to run-down of the secondary air pump. Caution: For designs with a valve check function for the secondary air diagnosis, a delayed switch-off of the secondary air valve is not acceptable, since the pump must work against the closed secondary air valve. After the power is switched off, the function to reinitialize secondary-air (C_ini) is blocked.

Description of the Secondary Air Mass:

The secondary air mass msl is dependent on the electrical system voltage which is predetermined by the characteristic MSLUB and is corrected depending on the operating point from the map KFFMSML and the ambient air density (characteristic FMSRHOL). When the engine is hot, especially during adaptations-additional diagnostic phase, the secondary air mass can still be corrected depending on tmot by the characteristic FMSTMOT. The pump will run up and down described by the dynamic factor fslpdyn.

In twin cylinder bank designs (SY_STERVK) as well as twin-ECU designs (SY_2SG) with an exhaust bank per ECU (not SY_STERVK) and a single SLP (SY_SLPANZ = 1) and one exhaust bank each, the secondary air system can be split in half and corrected on a bank-specific basis (FMSL, -2).

With bit 6 from the code word CWSLS (= B_slsadap), a secondary air adaptation factor fmsla(2) can be included as determined from the secondary air diagnosis. Finally, the secondary air dilution factor flamsl is calculated for the mixture control from the secondary air mass msl. After opening or closing the secondary air-valve, the dynamics of the secondary air flow into the exhaust are described by factor fmsldyn with the time constants ZKSLON and ZKSLOFF, after the air masses IMLSLSA, IMLSLSE were incorporated. The secondary air wash after closing the valve is indicated by B_slsoff.

Calculation of Enrichment due to Secondary Air:

Bit 3 of the code word CWSLS determines whether there is lambda-engine set point during secondary air injection via map KFLMSKH from function LAKH (flmssl = 0) or whether there is lambda-exhaust set-point, including secondary air via map KFLASKH from function LAKH (flmssl = 1) from an automatic calculation of the required lambda-engine with consideration of the secondary air dilution factor flamsl. Designs with lambda-exhaust set point can also be dependent on bit 4 realized after leaving the debounced idle or inputting the driving phase (bit 5) of the transition to lambda-engine through a filter with time constants ZFLMSSL. Via bit 2 of the codeword CWSLS, one can select whether with transition from B_slsoff or B_sls flmssl from the PT1-filter output is switched hard to 0.

Secondary Air Adaption/Short Journey:

The secondary air adaption via B_dslfa is requested from the secondary air diagnosis and switches on the secondary air for the time TDDSLA (B_sldsl4). It occurs in conjunction with the specification for lambda catalyst-heating then the secondary air mass adaptation or diagnosis in diagnostic phases 4, 5 (see also the description of the secondary air diagnosis in DSLSLR or DLSLRS).

The short journey is requested via B_fa and B_fasls when tmot > TMFASLMN and secondary air is activated for the time TDSLKT (B_slkt) when indicated by B_dslfa from module DSLSLR(S) via the diagnostics readiness. If catalyst heating is active, it remains so for the short test until the time TFALAMN and after that is disabled (since passive diagnostics are already running). Additionally, idle speed and torque reserve can be specified to set a diagnostics-capable engine operating point. This is especially necessary in conjunction with the diagnostic function DSLSLR for the two-point lambda control, by holding the engine under lambda = 1-control while the secondary air is not to operate at the rich limit.

It can be determined via CWFASL bit 2 whether the repeated incentives of short trips in a driving cycle is possible.

Application Notes

Suggested initial programming:

Overview of the coding variants of code word CWSLS:

Bit 0 = 0: secondary air with B_khBit 0 = 1: secondary air at start already in engine temperature windowBit 1 = 0: secondary air with B_khBit 1 = 1: no secondary air until vehicle speed \geq VSLS threshold

Bit 2 = 0: select lambda-engine Bit 2 = 1: select lambda-engine with B slsoff TRUE with B sls TRUE. Bit 3 = 0: select lambda-engine Bit 3 = 1: select lambda-exhaust (= secondary air enrichment) Bit 4 = 0: lambda-set point the Bit 4 = 1: transition to lambda-engine in part load same as idle/part-load. Bit 5 = 0: lambda-set point the Bit 5 = 1: transition to lambda-engine with driving phase same as o/m drive. Bit 6 = 0, without secondary air Bit 6 = 1; with secondary air adaptation adaptation Bit 7 = 0: KFLASKH-set point with Bit 7 = 1: KFLASKH-set point without B atmtpl. B atmtpl is B atmtpl (B_atmtpl enable meaningless. (WARNING: only set for application phase!) secondary air enrichment)

Secondary Air Concept with Thermal Reaction in the Exhaust Manifold:

CWSLS.0 = true. Secondary air already in the start in FTP-tmst region for quick start of post-reaction, Attention: On-board system load!

CWSLS.3 = true. Lambda exhaust set point \rightarrow automatic calculation of lambda-engine from secondary air dilution flamsl_w

CWSLS.4 = true. Transition to lambda-engine when leaving idle, because post-reaction stops anyway

CWSLS.5 = true. Transition to lambda-engine when loading the driving phase, because post-reaction stops anyway

CWSLS.6 = false. No secondary air adaptation

CWSLS.7 = false. KFLASKH set point only when B_atmtpl = true

Secondary Air Design with Further Reaction in the Catalyst:

CWSLS.0 = false: no secondary air in the false start

CWSLS.1 = true/false depending on the start of partial light-offs in the catalyst (cat-position)

CWSLS.3 = false: lambda engine set point during secondary air injection

CWSLS.6 = false: no secondary air adaptation

Overview of the coding variants of code word CWFASL:

Bit 0: 0: Short test termination if B_fs, vfzg> 0 or B_brems / B_kuppl (see bit 1). 1: no short test termination via B_fs, or vfzg B_brems/B_kuppl possible.

Bit 1: 0: Short test termination if B_brems or B_kuppl. 1: brake and clutch have to be actuated for a short test.

Bit 2: 0: short test can be induced only once in the driving cycle. 1: Short test times can be induced (see bit 3).

Bit 3: 0: Short test only possible after deleting previous fault memory. 1: short test possible without deleting error memory.

WARNING: When bit 3 is set, there is a risk that the catalyst is superheated by repeatedly carrying out short tests.

SLS parameters:

IMLSLMN	0	Secondary air at the same time as B_kh
IMLSLMX	0.9961	Secondary air during entire catalyst heating
TMSSLSTU	15°C	Secondary air from tmst > 15°C is already at the start CWSLS.0 = true
TMSSLSTO	35°C	Secondary air from tmst < 35°C
TMSSLU	15°C	Secondary air with B_kh when tmst > 15°C
TMSSLO	35°C	Secondary air with B_kh when tmst < 35°C
TASLSU	15°C	Secondary air with B_kh when tans > 15°C
TASLSO	35°C	Secondary air with B_kh when tans < 35°C
VSLS	10 km/h	Secondary air only when vehicle speed > 10 km/h when CWSLS.1 = true
MLSLMX	200 kg/h	Termination threshold when ml > 200 kg/h
DPSLV	0 mbar	Termination threshold pressure difference to open the secondary air valve
UBSLMN	9 V	Minimum battery voltage for sufficient secondary air mass
TSLABB	1 000	Debourses time for eccondeny air termination after angine start (P. stand)
	1 260	Debounce time for secondary an termination after engine start (D_stend)
UBSLMX	16 V	Fan protection during boost start
UBSLMX UBSLSTMN	16 V 8 V	Fan protection during boost start B_sls at start when battery voltage > 8 V

Secondary air pump parameters:

TVSLVON	0.1 sec	Secondary air valve opened at the same time as secondary air pump control
TVSLVOFF	0 sec	Secondary air valve closes at the same time as secondary air pump control
TVDSLOFF	2 sec	Secondary air valve closes 2 seconds after short journey/adaptation
TSLPMN	500 ms	Minimum dwell time of the secondary air pump-relay to the relay protection
TVSLP2	2 sec	Delay time for triggering a second secondary air pump

BMSL parameters:

MSLUB =	Function of battery voltage. Obtained from laboratory measurements of the fan at 100 mbar
KFFMSML =	Function of engine speed and relative load
FMSRHOL	overall factor = 1, approximate without air density correction
FMSTMOT =	Function of engine temperature overall = 1, approximate without correction
FMSL,-2	1 no single bank correction

BSLPDYN parameters:

ZKSLPON 1s Fan run-up

ZKSLPOFF 1s Fan run-down

BSLSOFF parameters:

IMLSLA 3.5 g

IMLSLSE 3.0 g Implementing air mass to clean out the secondary air system

Dynamic SLP:

Dependent on ml:	20	40	60	100	kg/h
ZKSLSONML 0.5	1.5 s	1.0 s	0.5 s	0.2 s	Project specific
S					
ZKSLSOFML 0.5 s	1.5 s	1.0 s	0.5 s	0.2 s	Project specific

BFMLSSL parameters:

TLMSSLMX	60 s	Termination of the thermal reaction (lambda-exhaust set point) after 60 s at idle
TLMSSLAB	1s	Debounce time for detection of exit from idle
ZFLMSSL	1s	Time constant for transition from lambda-exhaust \rightarrow lambda-engine

BKT parameters:

CWFASL s. o TMFASLMN: 60°C TFASLAMN: 60 sec TDDSLA: 25 s TDSLKT: 10 s

Abbreviations

Parameter CONT	Description
CWFASL	Code word: calibrator intervention for secondary air diagnostics
CWSLS	Code word for secondary air system
DPSLV	Minimum pressure difference across the secondary air valve

FMSL Factor for correcting secondary air mass, cylinder bank 1 FMSL2 Factor for correcting secondary air mass, cylinder bank 2 **FMSLOFF** Clearing threshold of the secondary air terminated **FMSRHOL** Air density correction of the secondary air mass Engine speed correction of the secondary air mass FMSTMOT Minimum ratio factor psum_w/mlsu for switching on SLS IMLSLMN IMLSLMX Maximum ratio factor psum w/mlsu for switching on SLS **IMLSLSA** Air mass integral threshold for initiation of secondary air in exhaust IMLSLSE Air mass integral threshold for termination of secondary air in exhaust Exhaust back-pressure corrections of the secondary air mass **KFFMSML** MLSLMX Maximum engine-air mass for secondary air injection MSLUB Secondary air mass dependent on the battery voltage SY BATTSG System constant: twin battery design SY_SGANZ System constant: number of ECUs System constant: activation of the secondary air pump with twin-ECU, 0 = master, 1 =SY_SLPANST slave, 2 = master & slave. Seperate System constant for the number of secondary air pumps SY SLPANZ System constant: activation of the secondary air valve with twin-ECU, 0 = master, 1 =SY SLVANST slave, 2 = master & slave, Seperate SY_SLWG System constant condition flag: secondary air/turbo wastegate present SY_STERVK System constant condition flag: stereo lambda control before catalytic converter TASLSO Upper air intake temperature threshold for secondary air system TASLSU Under air intake temperature threshold for secondary air system TDDSLA Continuous secondary air injection for adaptation phase TDSLKT Continuous short test secondary air diagnose for mass measurement **TFASLAMN** Minimum catalyst heating time for test requirement in secondary air diagnostics TLMSSLAB Debounce time for terminating secondary air enrichment TLMSSLMX Maximum time for secondary air enrichment during idle TMFASLMN Engine temperature threshold test requirement for secondary air diagnostics TMSSLO Upper start temperature threshold for secondary air TMSSLSTO Upper temperature threshold for secondary air at start TMSSLSTU Lower temperature threshold for secondary air at start TMSSLU Lower start temperature threshold for secondary air TSLABB Delay time for secondary air - termination condition Minimum duty cycle of the secondary air pump TSLPMN TSLUBST Debounce time for secondary air on at start by UBSLSTMN TVDSLOFF Time delay for closing secondary air valve for adaptation/short journey TVSLP2 Time delay for control of the no. 2 secondary air pump **TVSLVOFF** Time delay on closing the secondary air valve **TVSLVON** Time delay on opening the secondary air valve Minimum voltage for secondary air on UBSLMN UBSLMX Maximum voltage for secondary air on UBSLSTMN Minimum voltage for secondary air on at start Vehicle speed threshold for secondary air control on VSLS ZFLMSSL Time constant: mixture part secondary air Time constant: secondary air fan off/low flow ZKSLPOFF ZKSLPON Time constant: secondary air fan on/run-up ZKSLSOFML Time constant: evacuation of the secondary air after valve shut ZKSLSONML Time constant: introduction of secondary air after valve open Variable Description **B** ATMTPL Condition flag: dew point after catalyst exceeded (last journey) **B** BATNOT Condition flag: battery emergency start with twin battery design **B** BREMS Condition flag: brake operated **B** DSLFA Condition flag: secondary air system requirement for short test Condition flag: reset secondary air adaptation/short test **B** DSLRESET **B** DSLSET Condition flag: set secondary air adaption/short test Condition flag: secondary air system requirement for secondary air adaption/additional **B_DSLSP4** diagnostics **B** DSPE Condition flag: diagnostic secondary air on B DWG Condition flag: wastegate diagnostics B_ESLPE_C Condition flag: error secondary air pump (output stage) sent via CAN

B FA Condition flag: general functional requirement **B** FASLA Condition flag: external request to activate secondary air system **B** FASLS Condition flag: function requirement secondary air system B FS Condition flag: driving phase B_KH Condition flag: catalyst heating **B_KHA** Condition flag: catalyst-heating requirement B KHAB Condition flag: catalyst-heating terminated **B KUPPL** Condition flag: clutch actuated Condition flag: idle B LL **B_LMSSLOF** Condition flag: lambda-engine-set point-secondary air part, off **B** MASTERHW Condition flag: master-ECU in accordance coding pins (plausibility check) **B_MSLMN** Condition flag: insufficient secondary air mass **B_MSLOFF** Condition flag: secondary air mass ausgeräumt after secondary air phase **B_MSLON** Condition flag: steady-state secondary air mass after start of the secondary air **B_NMOT** Condition flag: engine speed > NMIN **B** SLDSL4 Condition flag: enabling secondary air for diagnostics phase 4 **B_SLKHOF** Condition flag: switching off the secondary air pump via imlpr-threshold **B_SLKT** Condition flag: enabling secondary air for short test B SLP Condition flag: secondary air pump No. 1 B SLP2 Condition flag: secondary air pump No. 2 **B** SLPANST Condition flag: for evaluation of the output stage error in secondary air control function **B** SLPENA Condition flag: switching on the secondary air pump **B_SLPMN** Condition flag: minimum operating time of the secondary air pump **B_SLPOFF** Condition flag: secondary air pump switched off **B** SLPOFST Condition flag for setting flip-flop B_slpoff Condition flag for secondary air pump, temporary intermediate size B_SLPT Condition flag for secondary air pump, sent via CAN B_SLP_C B SLS Condition flag: secondary air active **B** SLSADAP Condition flag: secondary air mass adaptation **B** SLSDIS Condition flag for switching off the secondary air pump Condition flag for blocking activation of the secondary air pump **B** SLSERR **B** SLSFZ Condition flag: secondary air system installed in the vehicle **B_SLSINHI** Condition flag: blocked by setting bit B_sls **B_SLSOAB** Condition flag: secondary air system without implementing the termination criterion **B_SLSOFF** Condition flag: secondary air injection terminated after elimination of the secondary air **B_SLST** Condition flag: secondary air active, temporary intermediate size B_SLS_C Condition flag: secondary air active sent via CAN B SLV Condition flag for secondary air valve **B** SLVANST Condition flag for determining the output stage error in the secondary air control module Condition flag: start B ST Condition flag: end of start conditions reached **B_STEND** DFP_SLPE Internal error path number: secondary air pump output stage DFP_SLS Internal error path number: secondary air system (cylinder bank 1) DFP_SLS2 Internal error path number: secondary air system (cylinder bank 2) DFP SLVE Internal error path number: secondary air valve output stage E_SLPE Error flag: secondary air pump (output stage) E_SLVE Error flag: secondary air valve (output stage) FLAMSL W Factor for lambda adjustment through secondary air (cylinder bank 1) FLAMSL2 W Factor for lambda adjustment through secondary air, (cylinder bank 2) Factor lambda-engine-set point secondary air part FLMSSL FMSAGD Exhaust gas back-pressure correction factor for the secondary air mass FMSLA Correction factor secondary air mass adaptive (cylinder bank 1) FMSLA2 Correction factor secondary air mass adaptive (cylinder bank 2) **FMSLDYN** Factor for dynamic specification of secondary air FMSLKOR Factor to correct the secondary air mass Air density correction of the secondary air mass FMSLRHO Engine temperature correction of the secondary air mass FMSLTM FRHOKOR W Factor to address the air density correction of the secondary air **FSLPDYN** Factor for dynamic specification of the secondary air pump **IMLPR** Relative air mass integral during catalyst heating IMLSLA W Air mass integral for introducing the secondary air IMLSLE W Air mass integral for end of secondary air in exhaust MLBB W Air mass flow filtered (word), cylinder bank 1

MLBB2_W	Air mass flow filtered (word), cylinder bank 2
ML W	Air mass flow filtered (word)
MSL	Secondary air mass flow (cylinder bank 1)
MSL2	Secondary air mass (cylinder bank 2)
MSL2_W	Secondary air mass (cylinder bank 2) 16-Bit value
MSLKORR_W	Corrected secondary air mass flow with consideration of pump dynamics (bank 1)
MSLPUB_W	Secondary air mass flow (battery voltage dependent) 16-Bit
MSLSTAT	Static secondary air mass flow
MSLSTAT_W	Static secondary air mass flow, 16-Bit
MSL_W	Secondary air mass flow 16-Bit value
NMOT	Engine speed
PS_W	Intake absolute pressure (word)
PU	Ambient pressure
RL	Relative air charge
TANS	Ambient air temperature
TMOT	Engine temperature
TMST	Engine start temperature
TNST_W	Time after end of start
UBSQF_W	System voltage, converted into standard quantization and filtered
VERHMSB_W	Number of the cylinder-specific mass flow distribution factor for cylinder bank 1
VERHMSB2_W	Number of the cylinder-specific mass flow distribution factor for cylinder bank 2
VFZG	Vehicle speed
Z_SLS	Cycle flag: secondary air-system (cylinder bank 1)
Z_SLS2	Cycle flag: secondary air-system (cylinder bank 2)

See the *funktionsrahmen* for the following diagrams: zue zue zue dzwll

ZUE 282.130 Function Description

The ignition angle (zwgru) from the fundamental ignition angle calculation is corrected by the warm-up angle (dzwwl) and the cylinder-specific knock control angle (dwkrz), and it follows that the basic ignition angle (zwbas) is identical with the earliest possible ignition angle. This ignition angle now forms the route in to the ignition engine torque implementation (MDZW), which provides the output ignition angle (zwsol). This ignition angle is now limited to the earliest or latest possible ignition angle. The resulting ignition angle (zwist) is corrected by the phase error which gives the output ignition angle (zwout).

For back-up protection of the ignition angles, the one's complement (i.e. inverse binary value) of zwout is calculated which forms zwoutcpl. This then becomes the input variable of the function monitor.

The cylinder bank selective ignition angle adjustment is activated via the codeword CWDZWLL = 1. The delta ignition angle (dzwll) corresponding to B_bankl2 is added to, or subtracted from zwsol.

ZUE 282.130 Application Notes

Three interfaces are provided for the application; the RAM cell vszw and the fixed value ZWAPPL ZW enable adjustment of application tools. Engagement of the torque functions can be disabled using the codeword CWMDAPP (bit 0), so that the applied ignition angle (zwbas) can be driven directly.

Parameter CWZWBANK FZIZWV KFDZWLL KLZWBSMN TMZIZWV VZIZWV WPHN ZWAPPL Variable	Description Codeword for enabling cylinder-specific ignition angle offsets Factor for torque correction via cylinder-specific ignition angle adjustment Map for delta ignition angle during idle Latest possible basic ignition angle Engine temperature threshold for enabling cylinder-specific ignition angle adjustment Vehicle speed threshold for disabling cylinder-specific ignition angle adjustment Phase response Application interface: ignition angle adjustment Description
B_BANK2	Condition flag for cylinder bank 2
B_LL	Condition flag for idle
B_LLREIN	Condition flag for idle control active
B_NOZWE	Condition flag for no ignition angle intervention in the torque structure
	Condition flag for overrun fuel cut-off
	Condition had for ignition angle application without torque intervention
	Condition had for ignition angle during idle active
	Cylinder-specific ignition angle retardation during knock control
DZWRANK	Cylinder bank-specific ignition angle offset
DZWOB	Delta ignition angle during overboost
DZWWL	Delta ignition angle during warm-up
DZWZK	Delta ignition angle during knock
MISOLZ_W	Indexed resulting desired torque for ignition angle intervention
MIZSOL_W	Indexed resulting desired torque for ignition angle intervention
NMOT	Engine speed
NSOL	Desired idle speed
REDIST	Actual reduction stage
RL	Relative cylinder charge
SY_REDMX	System constant: maximum reduction stage
SY_TDZW	System constant: additive ignition angle adaptation active
SY TURBO	System constant: turbocharger
SY_WMAX	System constant: earliest outputtable ignition angle
	System constant: latest outputtable ignition angle
	Closing time output
	Engine temperature
VFZG	Vehicle speed

VSTDZW	Additive ignition angle adaption
VSZW	Ignition angle correction adjusting system
WKRDY	Ignition angle retardation via dynamic knock regulation
WPHG	Ignition angle speed sensor phase correction
ZNACHANZ	Number of ignitions in overrun
ZWBAS	Basic ignition angle
ZWDLLPRT	Ignition angle pointer with delta idle ignition angle
ZWGRU	Fundamental ignition angle
ZWIST	Actual ignition angle
ZWOUT	Ignition angle output
ZWOUTCPL	One's complement of the ignition angles for function monitoring
ZWOUTPRT	Ignition angle pointer
ZWSOL	Desired ignition angle for torque intervention
ZWSPAE	Latest ignition angle
ZWSTT	Ignition angle during start
ZWZYL1	Ignition angle for cylinder 1
ZZYLZUE	Dwell angle-cylinder counter for calculating ignitions

ZWGRU 23.110 (Fundamental Ignition Angle)

See the *funktionsrahmen* for the following diagrams:

zwgru-zwgru

zwgru-zw-nws Sub-function ZW_NWS: Provision for binary or continously variable camshaft control zwgru-dzw-nws Sub-function DZW_NWS: Provision for binary or continously variable camshaft control (delta-ignition angle)

ZWGRU 23.110 Function Description

The fundamental ignition angle is provided by the map KFZW. The sub-function ZW_NWS describes the provision for any necessary camshaft timing (NWS). For binary camshaft control, the factor fnwue switches seamlessly between the maps KFZW and KFZW2. In the case of continuously variable camshaft control which depends on the camshaft overlap angle wnwue, an ignition angle correction DZWNWSUE added to KFZW. The currently valid camshaft control version is defined by the system constant SY_NWS in the software generation:

SY_NWS = 0: no camshaft control SY_NWS = 1: binary camshaft control SY_NWS = 2: continuously variable NWS SY_NWS > 2: not defined.

The software is translated conditionally, i.e. only one variant is available in the EPROM. SY_NWS is not in the EPROM and cannot be applied. The same additive ignition angle correction is performed as when calculating the optimum ignition angle (see %MDBAS), i.e. exhaust gas recirculation and lambda dependence are considered. The temperature dependence is considered in a separate module (ZWWL). The result is the ignition angle for cylinder bank 1 (zwref) which is also the reference for cylinder bank 2. For cylinder bank 2, the ignition angle offset dzwb2 is added to the ignition angle.

ZWGRU 23.110 Application Notes

The maps KFZW and KFZW2 are applied when the engine is warm for the respective camshaft control position, exhaust gas recirculation is inactive and lambda = 1. If the engine does not knock, the optimal ignition angle is input. For engine knock, the knock limit is input.

Parameter	Description
CNOKT	Codeword for lower octane fuel
CWZWBANK	Codeword for enabling cylinder-specific ignition angle offsets
DZWNWSUE	Delta ignition angle depending on camshaft overlap angle
KFDWSZ	Delta ignition angle for cylinder bank 1-specific ignition advance; through camshaft control
KFDWSZ2	Delta ignition angle for cylinder bank 2-specific ignition advance; through camshaft control
KFDZK	Delta ignition angle during knock
KFDZWKG	Ignition angle correction by moving the knock limit
KFSWKFZK	Ignition angle retardation threshold for switching between ignition angle maps
KFZW	Ignition angle map
KFZW2	Ignition angle map, variant 2
TMZIZWV	Engine temperature threshold for enabling cylinder-specific ignition angle adjustment
TSWKR	Time lag for summing ignition angle retardation queries
VZIZWV	Vehicle speed threshold for disabling cylinder-specific ignition angle adjustment
Variable	Description
B_KFZK	Condition flag for anti-knock map
B_KRDWS	Condition flag for knock control safety retardation
B_NOZWE	Condition flag for no ignition angle intervention on the engine torque structure
C_INI	Condition flag for intialising ECU
DZWB2	Ignition angle offset for cylinder bank 2
DZWBANK	Cylinder-bank specific ignition angle offset
DZWKG	Delta ignition angle for moving the knock limit
DZWOAG	Exhaust gas recirculation rate-dependent ignition angle correction of the optimum ignition angle
DZWOL	Lambda-dependent ignition angle correction of the optimum ignition angle
DZWZK	Delta ignition angle during knock
FNWUE	Weighting factor for ignition angle overlap (inlet)
LAMBAS	Basic lambda
NMOT	Engine speed
NMOT W	Engine speed (Word)
RL_W	Relative cylinder charge (Word)
SY_NWS	System constant for camshaft control: none, binary (on/off) or continuously variable

ZWGRU 23.110 (Fundamental Ignition Angle)

SY_ZIZWV	Text must be provided by Mrs Sauer
TMOT	Engine temperature
VFZG	Vehicle speed
WKRMA	Average of the ignition angle retardation during knock control, general (in limp mode with safety)
WNWUE	Camshaft overlap angle
ZWGRU	Fundamental ignition angle
ZWNWS	Fundamental ignition angle taking camshaft control into consideration
ZZYLZUE	ECU cylinder counter for ignition calculation