
1

Generating ASAP2 Files

Overview . . . . . . . . . . . . . . . . . . . . . . 1-2
Targets Supporting ASAP2 . . . . . . . . . . . . . . 1-3
Defining ASAP2 Information . . . . . . . . . . . . . . 1-3
Generating an ASAP2 File . . . . . . . . . . . . . . . 1-6
Customizing an ASAP2 File . . . . . . . . . . . . . . 1-9
Structure of the ASAP2 File . . . . . . . . . . . . . . 1-16



1 Generating ASAP2 Files

1-2

ASAP2 is a data definition standard proposed by the Association for
Standardization of Automation and Measuring Systems (ASAM). ASAP2 is a
standard description you use for data measurement, calibration, and
diagnostic systems.

This section includes the following topics:

• Overview. Topics you should be familiar with before working with ASAP2
file generation.

• Targets Supporting ASAP2. Real-Time Workshop® targets with built-in
ASAP2 support.

• Defining ASAP2 Information. Signal and parameter information from a
Simulink model needed to create an ASAP2 file.

• Generating an ASAP2 File. Procedure for creating an ASAP2 file from a
Simulink model.

• Customizing an ASAP2 File. Target Language CompilerTM (TLC) files you
can change to customize the ASAP2 file generated from a Simulink model.

• Structure of the ASAP2 File. Summary of the parts of the ASAP2 file and
the Target Language Compiler functions used to write each part.

Overview
The Real-Time Workshop lets you export an ASAP2 file containing information
about your model during the code generation process.

To make use of ASAP2 file generation, you should become familiar with the
following topics:

• ASAM and the ASAP2 standard and terminology. See the ASAM Web site at
http://www.asam.de.

• Simulink data objects. Data objects are used to supply information not
contained in the model. See Using Simulink.

• Storage and representation of signals and parameters in generated code. See
“Parameters: Storage, Interfacing and Tuning” and “Signals: Storage,
Optimization, and Interfacing” in the Real-Time Workshop User’s Guide.

• Signal and parameter objects and their use in code generation. See
“Simulink Data Objects and Code Generation” in the Real-Time Workshop
User’s Guide.



1-3

Targets Supporting ASAP2
The Real-Time Workshop provides two target configurations you can use to
generate ASAP2 files. You can select either of these target configurations from
the System Target File Browser.

• The ASAM-ASAP2 Data Definition Target lets you generate only an ASAP2
file, without building an executable.

• The Real-Time Windows Embedded Coder lets you generate an ASAP2 file
as part of the code generation and build process.

Procedures for generating ASAP2 files via these targets are given in
“Generating an ASAP2 File” on page 1-6.

Alternatively, you can add ASAP2 support to your own target by defining the
TLC variable GenerateASAP2 in your system target file, as shown in the
following code example.

%assign GenerateASAP2 = 1
%include "codegenentry.tlc"

Note  You must define GenerateASAP2 before including codegenentry.tlc.

Defining ASAP2 Information
The ASAP2 file generation process requires information about your model's
parameters and signals. Some of this information is contained in the model
itself. The rest must be supplied by using Simulink data objects with the
necessary properties.

The Real-Time Workshop provides two example data classes to assist you in
providing the necessary information. The classes are:

• ASAP2.Parameter, a subclass of Simulink.Parameter

• ASAP2.Signal, a subclass of Simulink.Signal

This document refers to these as the ASAP2 classes, and to objects instantiated
from these classes as ASAP2 objects. The ASAP2 class creation files are located
in the directory matlabroot/toolbox/rtw/targets/asap2/asap2. To create
ASAP2 objects, make sure that this directory is on the MATLAB path.



1 Generating ASAP2 Files

1-4

As with the built-in Simulink.Parameter and Simulink.Signal classes, we
recommend that you create your own packages and classes rather than using
the ASAP2 classes directly. To do this, copy and rename the directory
matlabroot/toolbox/rtw/targets/asap2/asap2/@ASAP2, and modify the
class creation files it contains. You can extend the ASAP2 classes if additional
properties are required. For general information about extending data object
classes, see Using Simulink.

The following table contains the minimum set of data attributes required for
ASAP2 file generation. Some data attributes are defined in the model; others
are supplied in the properties of ASAP2 objects.For attributes that are defined
in ASAP2.Parameter or ASAP2.Signal objects, the table gives the associated
property name.



1-5

Note on the Memory Address Attribute. The Memory Address attribute, if known
before code generation, can be defined in the data object. Otherwise, a
placeholder string is inserted. You can replace the placeholder with the actual
address by post-processing the generated file. See the file
matlabroot/toolbox/rtw/targets/asap2/asap2/asap2post.m
for an example.

Data Required for ASAP2 File Generation

Data Attribute Defined In Property Name

Data type Model Not applicable

Scaling
(if fixed point data
type)

Model Not applicable

Name (Symbol) Data object Inherited from name of handle to the
data object to which parameter or
signal name resolves

Long identifier
(Description)

Data object LongID_ASAP2

Minimum
allowable value

Data object PhysicalMin_ASAP2

Maximum
allowable value

Data object PhysicalMax_ASAP2

Units Data object Units_ASAP2

Memory Address
(optional)

Data object
(see note
below)

MemoryAddress_ASAP2 (optional)



1 Generating ASAP2 Files

1-6

Generating an ASAP2 File
You can generate an ASAP2 file from your model in one of the following ways:

• Use the Real-Time Windows Embedded Coder to generate an ASAP2 file as
part of the code generation and build process.

• Use the ASAM-ASAP2 Data Definition Target to generate only an ASAP2
file, without building an executable.

• Add ASAP2 support to your own target (see “Targets Supporting ASAP2” on
page 1-3).

This section discusses how to generate an ASAP2 file via the targets that have
built-in ASAP2 support.

Generating ASAP2 Files via the Real-Time Windows Embedded Coder 
The procedure for generating a model's data definition in ASAP2 format via the
Real-Time Windows Embedded Coder is as follows:

1 Create the desired model. Use appropriate parameter names and signal
labels to refer to CHARACTERISTICS and MEASUREMENTS respectively.

2 Define the relevant ASAP2.Parameter and ASAP2.Signal objects in the
MATLAB workspace.

3 Configure the data objects to generate unstructured global storage
declarations in the generated code by assigning one of the following storage
classes to the RTWInfo.StorageClass property:

- ExportedGlobal
- ImportedExtern
- ImportedExternPointer

4 Configure the other data object properties such as LongID_ASAP2,
PhysicalMin_ASAP2, etc.

5 In the Advanced page of the Simulation Parameters dialog box, select the
Inline parameters option.

Note that you should not configure the parameters associated with your data
objects in the Model Parameter Configuration dialog box. If a parameter
that resolves to a Simulink data object is configured using the Model



1-7

Parameter Configuration dialog box, the dialog box configuration is
ignored. You can, however, use the Model Parameter Configuration dialog
to configure other parameters in your model.

6 In the Real-Time Workshop page, click Browse to open the System Target
File Browser. In the browser, select the Real-Time Windows Embedded
Coder Target.

7 Select ERT advanced options from the Category menu of the Real-Time
Workshop page. Then select the Generate ASAP2 file option.

8 Click Apply.

9 Click Build (or Generate code).

10 The Real-Time Workshop writes the ASAP2 file to the build directory. The
ASAP2 filename is controlled by the ASAP2 setup file. By default, the file is
named model.a2l.

Generating ASAP2 Files via the ASAM-ASAP2 Data Definition Target 
The procedure for generating a model's data definition in ASAP2 format via the
ASAM-ASAP2 Data Definition Target is as follows:



1 Generating ASAP2 Files

1-8

1 Create the desired model. Use appropriate parameter names and signal
labels to refer to CHARACTERISTICS and MEASUREMENTS respectively.

2 Define the relevant ASAP2.Parameter and ASAP2.Signal objects in the
MATLAB workspace.

3 Configure the data objects to generate unstructured global storage
declarations in the generated code by assigning one of the following storage
classes to the RTWInfo.StorageClass property:

- ExportedGlobal
- ImportedExtern
- ImportedExternPointer

4 Configure the other data object properties such as LongID_ASAP2,
PhysicalMin_ASAP2, etc.

5 In the Advanced page of the Simulation Parameters dialog box, select the
Inline parameters option.

Note that you should not configure the parameters associated with your data
objects in the Model Parameter Configuration dialog box. If a parameter
that resolves to a Simulink data object is configured using the Model
Parameter Configuration dialog box, the dialog box configuration is
ignored. You can, however, use the Model Parameter Configuration dialog
to configure other parameters in your model.

6 In the Real-Time Workshop page, click Browse to open the System Target
File Browser. In the browser, select the ASAM-ASAP2 Data Definition
Target.



1-9

7 Select Target configuration from the Category menu of the Real-Time
Workshop page. Then select the Generate code only option.

This picture shows the correct configuration.

8 Click Apply.

9 Click Generate code.

10 The Real-Time Workshop writes the ASAP2 file to the build directory. The
ASAP2 filename is controlled by the ASAP2 setup file. By default, the file is
named model.a2l.

Customizing an ASAP2 File
The Real-Time Workshop Embedded Coder provides a number of TLC files to
enable you to customize the ASAP2 file generated from a Simulink model. The
following figure illustrates the hierarchy of ASAP2 related directories and files
within the MATLAB directory.



1 Generating ASAP2 Files

1-10

ASAP2 File Structure on the MATLAB Path
The ASAP2 related files are located within the directories shown above. The
files are organized as follows:

• TLC files for generating ASAP2 Files

The matlabroot/rtw/c/tlc directory contains TLC files that generate
ASAP2 files. These files are included by the Real-Time Workshop Embedded
Coder and ASAP2 system target files (ert.tlc and asap2.tlc).

• ASAP2 target files

The matlabroot/toolbox/rtw/targets/asap2/asap2 directory contains the
ASAP2 system target file and other control files.

TLC files for generating ASAP2

Target files

Customizable TLC files

ASAP2 templates

Class creation files



1-11

• ASAP2 class creation files

The matlabroot/toolbox/rtw/targets/asap2/asap2/@ASAP2 directory
contains the M-files that define the ASAP2.Parameter and ASAP2.Signal
classes.

• Customizable TLC files

The matlabroot/toolbox/rtw/targets/asap2/asap2/user directory
contains files that you can modify to customize the content of your ASAP2
files.

• ASAP2 templates

The matlabroot/toolbox/rtw/targets/asap2/asap2/user/templates 
directory contains templates that define each type of CHARACTERISTIC in the
ASAP2 file.

Customizing the Contents of the ASAP2 File
The ASAP2 related TLC files enable you to customize the appearance of the
ASAP2 file generated from a Simulink model. Most customization is done by
modifying or adding to the files contained in the matlabroot/toolbox/rtw/
targets/asap2/asap2/user directory.This section refers to this directory as
the asap2/user directory.

The user-customizable files provided are divided into two groups:

• The static files define the parts of the ASAP2 file that are related to the
environment in which the generated code is used. They describe information
specific to the user and/or project. The static files are not model-dependant.

• The dynamic files define the parts of the ASAP2 file that are generated based
on the structure of the source model.

The procedure for customizing the ASAP2 file is as follows:

1 Make a copy of the asap2/user directory before making any modifications.

2 Remove the old asap2/user directory from the MATLAB path, or add the
new asap2/user directory to the MATLAB path above the old directory. This
will ensure that MATLAB uses the new ASAP2 setup file, asap2setup.tlc.

asap2setup.tlc specifies which directories and files to include in the TLC
path during the ASAP2 file generation process. Modify asap2setup.tlc to
control the directories and folders included in the TLC path.



1 Generating ASAP2 Files

1-12

3 Modify the static parts of the ASAP2 file. These include:

- Project and header symbols, which are specified in asap2setup.tlc.

- Static sections of the file, such as file header and tail, A2ML, MOD_COMMON,
etc. These are specified in asap2userlib.tlc.

- Specify the appearance of the dynamic contents of the ASAP2 file by
modifying the existing ASAP2 templates, or by defining new ASAP2
templates. Sections of the ASAP2 file affected include:

- RECORD_LAYOUTS: modify appropriate parts of the ASAP2 template files.

- CHARACTERISTICS: modify appropriate parts of the ASAP2 template files.

For more information on modifying the appearance of CHARACTERISTICS,
see “ASAP2 Templates” on page 1-12.

- MEASUREMENTS: These are specified in asap2userlib.tlc

- COMPU_METHODS: These are specified in asap2userlib.tlc

ASAP2 Templates
The appearance of CHARACTERISTICS in the ASAP2 file is controlled using a
different template for each type of CHARACTERISTIC. The asap2/user directory
contains template definition files for scalars, 1-D Lookup Tables and 2-D
Lookup Tables. You can modify these template definition files, or you can
create additional templates as required.

The procedure for creating a new ASAP2 template is as follows:

1 Define a parameter group. See “Defining Parameter Groups”.

2 Create a template definition file. See “Creating Template Definition Files”.

3 Include the template definition file in the TLC path. The path is specified in
the ASAP2 setup file, asap2setup.tlc.

Defining Parameter Groups. In some cases it is necessary for multiple parameters
to be grouped together in the ASAP2 file (for example, the x and y data in a
1-D Lookup Table). Parameter groups enable Simulink blocks to define an
associative relationship between some or all of their parameters. The following
example shows the Lookup1D parameter group and describes how to create and
use parameter groups in conjunction with the ASAP2 file generation process.



1-13

Parameter groups are created as part of the BlockInstanceSetup function
within a block's TLC file. There are two built-in TLC functions that facilitate
this process: SLibCreateParameterGroup and SLibAddMember. The following
code fragment creates the Lookup1D parameter group in look_up.tlc. Similar
syntax is used to create parameter groups for Look-Up Table (2D), FixPt
Look-Up Table, and FixPt Look-Up Table (2-D).

%if GenerateInterfaceAPI
  %% Create a parameter group for ASAP2 data definition
  %assign group  = SLibCreateParameterGroup(block,"Lookup1D")
  %assign tmpVar = SLibAddMember(block,group,InputValues)
  %assign tmpVar = SLibAddMember(block,group,OutputValues)
%endif

ParameterGroup records are not written to the model.rtw file, but are included
as part of the relevant Block records in the CompiledModel. The following code
fragment shows the Lookup1D parameter group. The Lookup1D parameter
group has two Member records. The Reference fields of these records refer to the
relevant x and y data records in the GlobalMemoryMap.

Block {
  Type      Lookup
  Name      "<Root>/Look-Up Table"
  ...
  NumParameterGroups    1
  ParameterGroup {
    Name         Lookup1D
    NumMembers   2
    Member {
      NumMembers   0
      Reference    ...
    }
    Member {
      NumMembers   0
      Reference    ...
    }
  }
}

The Lookup1D parameter group is used by the function
ASAP2UserFcnWriteCharacteristic_Lookup1D, which is defined in the



1 Generating ASAP2 Files

1-14

template definition file, asap2lookup1d.tlc. This function uses the parameter
group to obtain the references to the associated x and y data records in the
GlobalMemoryMap, as shown in the following code fragment.

%function ASAP2UserFcnWriteCharacteristic_Lookup1D(paramGroup) Output
  %assign xParam = paramGroup.Member[0].Reference
  %assign yParam = paramGroup.Member[1].Reference
  ...
%endfunction

Creating Template Definition Files. This section describes the components that make
up an ASAP2 template definition file. This information is provided in the form
code examples from asap2lookup1d.tlc, the template definition file for the
Lookup1D template. This template corresponds to the Lookup1D parameter
group.

Note  When creating a new template, use the corresponding parameter group
name in place of Lookup1D in the code fragments shown.

The following sections describe the components of an ASAP2 template
definition file.

Template Registration Function. The input argument is the name of the parameter
group associated with this template.

%<LibASAP2RegisterTemplate("Lookup1D")>

RECORD_LAYOUT Name Definition Function. Record layout names (aliases) can be
arbitrarily specified for each data type. This function is used by the other
components of this file.

%function ASAP2UserFcnRecordLayoutAlias_Lookup1D(dtId) void
  %switch dtId
  %case tSS_UINT8
    %return "Lookup1D_UBYTE"
  ...
  %endswitch
%endfunction

Function to Write RECORD_LAYOUT Definitions. This function writes out
RECORD_LAYOUT definitions associated with this template. The function is



1-15

called by the built-in functions involved in the ASAP2 file generation process.
The function name must be defined as shown, with the appropriate template
name after the underscore.

%function ASAP2UserFcnWriteRecordLayout_Lookup1D() Output
  /begin RECORD_LAYOUT 
%<ASAP2UserFcnRecordLayoutAlias_Lookup1D(tSS_UINT8)>
    ...
  /end   RECORD_LAYOUT
%endfunction

Function to Write the CHARACTERISTIC. This function writes out the
CHARACTERISTIC associated with this template. The function is called by the
built-in functions involved in the ASAP2 file generation process. The function
name must be defined as shown, with the appropriate template name after the
underscore.

The input argument to this function is a pointer to a parameter group record.
The example shown is for a Lookup1D parameter group which has two
members. The references to the associated x and y data records are obtained
from the parameter group record as shown.

This function calls a number of built-in functions to obtain the required
information. For example, LibASAP2GetSymbol returns the symbol (name) for
the specified data record.

%function ASAP2UserFcnWriteCharacteristic_Lookup1D(paramGroup) 
Output
  %assign xParam = paramGroup.Member[0].Reference
  %assign yParam = paramGroup.Member[1].Reference
  %assign dtId = LibASAP2GetDataTypeId(xParam)
    /begin CHARACTERISTIC

/* Name */ %<LibASAP2GetSymbol(xParam)>
/* Long identifier */ "%<LibASAP2GetLongID(xParam)>"
...

    /end CHARACTERISTIC
%endfunction

Structure of the ASAP2 File
The table below outlines the basic structure of the ASAP2 file and describes
which TLC functions and files are used to create each part of the file.



1 Generating ASAP2 Files

1-16

• Static parts of the ASAP2 file are shown in bold.

• Function calls are indicated by %<FunctionName()>.



1-17

Sections of ASAP2 File and Related TLC Functions and Files

File Section Contents of asap2main.tlc TLC File Containing 
Function Definition

File header %<ASAP2UserFcnWriteFileHead()> asap2userlib.tlc

/begin PROJECT "" /begin PROJECT "%<ASAP2ProjectName>" asap2setup.tlc

 /begin HEADER ""
  HEADER contents
 /end HEADER

 /begin HEADER "%<ASAP2HeaderName>"
  %<ASAP2UserFcnWriteHeader()>
 /end HEADER

asap2setup.tlc
asap2userlib.tlc

 /begin MODULE ""
  MODULE contents:
  - A2ML
  - MOD_PAR
  - MOD_COMMON
  ...

 /begin MODULE "%<ASAP2ModuleName>"
  %<ASAP2UserFcnWriteHardwareInterface()>

asap2setup.tlc
asap2userlib.tlc

 Model-dependent
  MODULE contents:
  - RECORD_LAYOUTs
  - CHARACTERISTICS
    - ParameterGroups
    - ModelParameters

 %<SLibASAP2WriteDynamicContents()>
Calls user-defined functions:

    ...WriteRecordLayout_TemplateName()

    ...WriteCharacteristic_TemplateName()
    ...WriteCharacteristic_Scalar()

asap2lib.tlc

user/templates/...

 - MEASUREMENTS
    - ExternalInputs
    - BlockOutputs

 ...WriteMeasurement()
   

asap2userlib.tlc

 - COMPU_METHODS  ...WriteCompuMethod() asap2userlib.tlc

/end MODULE /end MODULE

/end PROJECT /end PROJECT

File footer/tail %<ASAP2UserFcnWriteFileTail()> asap2userlib.tlc


	Overview
	Targets Supporting ASAP2
	Defining ASAP2 Information
	Generating an ASAP2 File
	Customizing an ASAP2 File
	Structure of the ASAP2 File

