
Stem cell therapy for cardiac repair:
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Cardiovascular disease remains the leading cause of death worldwide. Acute
ischaemic injury and chronic cardiomyopathies lead to permanent loss of cardiac
tissue and ultimately heart failure. Current therapies aim largely to attenuate the
pathological remodelling that occurs after injury and to reduce risk factors for
cardiovascular disease. Studies in animal models indicate that transplantation
of mesenchymal stem cells, bone-marrow-derived haematopoietic stem cells,
skeletal myoblasts, or embryonic stem cells has the potential to improve the
function of ventricular muscle after ischaemic injury. Clinical trials using primarily
bone-marrow-derived cells and skeletal myoblasts have also produced some
encouraging results. However, the current experimental evidence suggests that
the benefits of cell therapy are modest, the generation of new cardiac tissue is
low, and the predominant mechanisms of action of transplanted stem cells
involve favourable paracrine effects on injured myocardium. Recent studies show
that the adult heart possesses various pools of putative resident stem cells,
raising the hope that these cells can be isolated for therapy or manipulated in
vivo to improve the healing of cardiac muscle after injury. This article reviews the
properties and potential of the various stem cell populations for cardiac repair
and regeneration as well as the barriers that might lie ahead.

Cardiovascular disease is the leading cause of
death worldwide. Of the almost 17 million
people who die each year from cardiovascular
causes, over 11 million die as a result of cardiac
disease and 5.5 million deaths are related to
stroke. Myocardial infarction carries a short-
term mortality rate of about 7% (with
aggressive therapy), and congestive heart
failure an even more distressing 20% one-year

mortality (Ref. 1). Despite significant strides in
therapy, thanks to newer treatment modalities
and risk-reduction strategies, the global burden
remains substantial (Refs 2, 3, 4, 5). This
continued health problem has prompted
research into new therapeutic approaches.

Stem cell therapy is a relatively new frontier in
the battle against cardiovascular disease that has
sparked intense research and criticism. With the

Vanderbilt University, Department of Medicine, Division of Cardiovascular Medicine, and
Department of Cell & Developmental Biology, Nashville, TN, USA.

*Corresponding author: Antonis K. Hatzopoulos, Vanderbilt University, Department of Medicine,
Division of Cardiovascular Medicine, and Department of Cell & Developmental Biology, MRB IV
P425C, 2213 Garland Avenue, Nashville, TN 37232, USA. Tel: +1 615 936 5529; Fax: +1 615 936 1872;
E-mail: antonis.hatzopoulos@vanderbilt.edu

expert reviews
http://www.expertreviews.org/ in molecular medicine

1
Accession information: doi:10.1017/S1462399409001124; Vol. 11; e20; July 2009

& Cambridge University Press 2009. Re-use permitted under a Creative Commons Licence – by-nc-sa.

S
te

m
ce

ll
th

er
ap

y
fo

r
ca

rd
ia

c
re

p
ai

r:
b

en
efi

ts
an

d
b

ar
ri

er
s



discovery of various stem cell populations
possessing cardiogenic potential, and the
subsequent ability to isolate and expand
these cells, the notion of a restorative therapy
has begun to take shape. Although much
knowledge has been gained through more
than a decade of research, numerous barriers
to true cardiac regeneration remain. In the
pursuit of this endeavour, it has become
apparent that we need to better understand
the processes that lead to both damage and
repair if we are to realise the true potential of
stem cell therapy.

Ischaemia and infarct
Myocardial ischaemia, whether acute or chronic,
begets a cascade of events leading to cellular
injury or death with resultant scar formation
and ultimately mechanical dysfunction,
electrical uncoupling and loss of structural
integrity (Ref. 6). Other than early restoration of
blood flow, which engenders its own
complications, the process is largely irreversible
(Refs 7, 8). True regeneration is extremely limited.

Within seconds of an ischaemic insult, aerobic
glycolysis ceases, leading to marked ATP
depletion and lactic acid accumulation (Refs 9,
10). Early in the process, clinical reduction in
myocardial contractility occurs secondary to the
build up of various tissue metabolites that
reduce the Ca2þ sensitivity of contractile
myofilaments (Ref. 11). Continued oxygen
deprivation leads to failure of the Naþ/Kþ-
ATPase pump, an increase in intracellular
solute, and subsequent swelling (Refs 7, 12).
Accumulation of lactic acid reduces the cellular
pH, limiting the activity of essential enzymes
and increasing the release of lysosomal
products that lead to cellular breakdown. In
addition, the failure of the Ca2þ pump leads to
Ca2þ influx, with damaging effects on
numerous intracellular components including
ribosomal dissociation and mitochondrial
membrane potential reduction, ultimately
ending in apoptosis (Ref. 13). Cellular death
signals macrophage and neutrophil infiltration,
originally to the periphery and later to the
centre of the infarct. As phagocytosis ensues,
the necrotic tissue is removed and replaced
with fibrovascular granulation tissue, leading
to a decrease in the thickness of the muscle
wall. As the process continues, neutrophils are
replaced with myofibroblasts and subsequent

deposition of collagen (predominantly type I
and III). Finally, the cellularity is
reduced, leaving only a dense collagenous
scar (Ref. 6).

Scar formation is an essential aspect of rapid
wound healing, especially in the injured
myocardium, which is under constant wall
stress. Without rapid wound healing, the
ischaemic region would be subject to rupture,
which is generally incompatible with life. Scar
formation therefore offers protection from
immediate danger by providing a rapid
mechanical barrier (Ref. 14). However, scar
tissue is largely acellular and lacks the normal
biochemical properties of the host cells. This
leads to electrical uncoupling, mechanical
dysfunction, and loss of structural integrity,
ultimately resulting in a dilated
cardiomyopathy (Refs 15, 16). Limiting scar
formation or even reversing the process could
thus prove beneficial in maintaining the overall
function of the organ.

To date, the mainstays in treatment of heart
disease focus on reducing myocardial oxygen
demand, increasing its supply and limiting the
ischaemic burden in an effort to prevent scar
formation and enhance myocardial function.
However, once scar formation has occurred, a
vicious cycle ensues, first with localised
dysfunction and later with remodelling and
dilation of the surrounding myocardium, leading
to heart failure.

It is well known that following injury many
species of amphibians and fish undergo
complete regeneration (Refs 17, 18). Moreover,
embryos respond differently than adults to tissue
injury, with rapid, almost complete, regeneration
and little scar formation (Ref. 19). This is
believed to be a result of both the intrinsic
function of embryonic fibroblasts as well as the
external milieu surrounding the embryonic cells
(Ref. 17). A better understanding of these
intrinsic regenerative mechanisms may lead to
novel potent therapies in the future.

The discovery of the proliferative capacity and
plasticity of various stem cell populations has
sparked much interest and debate regarding
their use as a potential therapy. Over the past
decade, several different stem cell types have
been studied in an effort to find the best source
for cardiac regeneration. Each stem cell
population has its own advantages and
complications (Table 1). Here, we examine the
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various stem cells utilised in animal models and
clinical trials thus far, discussing briefly their
benefits, disadvantages and evidence
supporting their use.

Embryonic stem cells
Mouse and human embryonic stem cells (ESCs)
can be removed from the inner mass of the
blastocyst and expanded practically indefinitely
in vitro (Refs 20, 21, 22). ESCs remain
pluripotent in an undifferentiated state in
culture; when allowed to differentiate, usually
as embryoid bodies, ESCs are able to give rise
to most somatic cell lineages (Refs 23, 24, 25). In
this regard, their regenerative capacity is
theoretically limitless. Furthermore, by
culturing the embryoid bodies in various
growth media, one can drive differentiation
towards a desired cell type such as the
cardiomyocyte (Refs 23, 24). These cells can
then be implanted into the corresponding
organ. This approach to repair cardiac tissue
after injury has been tested in preclinical
studies with encouraging results (Refs 26, 27,
28, 29). In fact, of the various stem cell
populations studied so far, perhaps the greatest
capacity for cardiac cell differentiation and
long-term cell survival has been seen in studies
using ESCs (Ref. 30).

To date, no human trials have been attempted
using ESCs for cardiac repair. There have been
three main concerns regarding their use as a
treatment modality. First, differentiating
embryoid bodies contain cells from all three
germ layers of ectoderm, mesoderm and
endoderm, and therefore possess the capacity to
differentiate along any or all of these lineages.
This increases the likelihood of teratoma
formation at the implantation site. Although
these teratomas are believed to be largely
benign in vivo, reasonable concerns have been
raised because some cells have been found to
express markers similar to those found in
malignant tumors (Ref. 31). There is some
evidence that the host tissues secrete factors
that help drive the stem cells along a particular
differentiation pattern (Refs 29, 32).
Subsequently, there has been increased interest
in culturing the embryoid bodies in specific
media to promote differentiation to specific cell
types (Ref. 33). These partially, or in some cases
fully, differentiated cells can then be implanted,
alleviating some of the risk of teratoma

formation. Studies with these differentiated
cells have shown increased engraftment and
functional improvement (Refs 28, 30). While no
long-term studies have been carried out to
assess the real risk of teratoma formation, the
theoretical concern remains an important
obstacle.

The second issue regarding the use of ESCs
pertains to immunity. Once thought to be
uniquely immunoprivileged, increasing
evidence has demonstrated that ESCs express
specific human leukocyte antigen (HLA)
subclasses (Ref. 34). This raises the worry of
graft rejection and might necessitate
immunosuppression. Steroid use without
concomitant stem cell implantation has been
known for some time to be harmful to
ischaemic myocardium (Ref. 35). Not only does
immunosuppression complicate the treatment
with stem cells, but it may in fact undo any
benefit derived from the addition of the stem
cells to the ischaemic milieu. There is currently
ongoing research to help limit the
immunogenicity of the cells for allogeneic
transplantation.

Finally, the origin of ESCs has raised
considerable ethical concerns and led to heated
debates among scientists and the wider public.
The recent discovery that it is possible to
generate ESC-like cells, called inducible
pluripotent stem (iPS) cells, by reprogramming
adult somatic cells with genes regulating ESC
pluripotency may resolve the ethical and
immunogenic issues associated with the use of
ESCs (Refs 36, 37, 38).

Bone-marrow-derived stem cells
Bone marrow haematopoietic progenitor/
stem cells
Bone marrow haematopoietic stem cells, or
circulating peripheral blood progenitor cells,
were shown to differentiate into
cardiomyocytes in culture, making them of
particular interest in the treatment of cardiac
disease because they represent a well-
characterised and ample source of progenitor
cells (Refs 39, 40, 41, 42). A number of
landmark studies showed significant
improvement in cardiac function when bone-
marrow-derived cells were implanted directly
or mobilised from endogenous reservoirs. Some
analyses not only showed improved ventricular
function, but actually demonstrated

expert reviews
http://www.expertreviews.org/ in molecular medicine

4
Accession information: doi:10.1017/S1462399409001124; Vol. 11; e20; July 2009

& Cambridge University Press 2009. Re-use permitted under a Creative Commons Licence – by-nc-sa.

S
te

m
ce

ll
th

er
ap

y
fo

r
ca

rd
ia

c
re

p
ai

r:
b

en
efi

ts
an

d
b

ar
ri

er
s



regeneration of contracting cardiomyocytes and
vascular beds (Refs 43, 44, 45, 46). However,
other investigations found limited or no
differentiation of bone marrow cells to
cardiovascular cell types (Refs 47, 48),
suggesting a beneficial effect independent of
tissue regeneration (Ref. 49). Nevertheless, the
improvements seen in ventricular function
prompted a number of clinical trials using
autologous bone marrow cells to treat heart
failure patients or patients who had suffered a
myocardial infarction. The clinical studies used
circulating haematopoietic progenitor cells, or
bone marrow mononuclear cells (MNCs), which
also contain the small population of
haematopoietic stem cells.

Early smaller studies were encouraging.
However, larger, randomised, placebo-controlled
and blinded studies have shown some mixed
results (Refs 50, 51, 52, 53). The REPAIR-AMI trial
(the largest of the randomised, placebo-controlled
trials) was positive in that it not only
demonstrated improved left ventricular function,
but also showed a reduction in the combined
clinical endpoint of death, myocardial infarction
or revascularisation at one year (Ref. 54). The
BOOST trial also showed improved left
ventricular function early on compared with
control patients, but by 18 months that difference
had disappeared as control patients caught up
with those who received cell therapy (Refs 55,
56). In contrast to the improved left ventricular
function results of the REPAIR-AMI and BOOST
trials, a double-blind, randomised controlled
study, using autologous bone marrow MNCs in
patients with myocardial infarction 24 h after
successful percutaneous coronary intervention,
showed no benefit in left ventricular ejection
fraction, but a significant reduction in infarct size
and improved regional left ventricular function
(Ref. 53).

A recent meta-analysis of 18 randomised and
nonrandomised trials involving 999 patients
with acute myocardial infarction or chronic
ischaemic cardiomyopathy found that
transplantation of adult bone marrow cells
improved left ventricular ejection fraction by
5.40%, decreased infarct scar size by 5.49% and
lowered left ventricular end-systolic volume by
4.80 ml (Ref. 57).

It is possible that the apparently conflicting
results among different trials are secondary to
the cell preparation or the timing of the cell

administration. There is clearly a need for
further large-scale trials to assess the role of
infused bone marrow cells in cardiac repair in
order to improve their therapeutic efficacy.

Mesenchymal stem cells
Mesenchymal stem cells (MSCs) are a subset of
stem cells that inhabit the stroma of bone
marrow and can differentiate into osteoblasts,
chondrocytes and adipocytes (Refs 58, 59). They
can be separated from haematopoietic cells by
their ability to adhere to the culture dish
(Ref. 60). MSCs can also be induced to
differentiate in vitro into cardiomyocytes, which
has stimulated a large number of animal and
clinical studies to evaluate the efficacy of MSCs
for cardiac repair and regeneration (Refs 61, 62,
63). MSCs are potentially advantageous as they
are thought to be less immunogenic than other
lines (Refs 64, 65). This alleviates the need for
immunosuppression or autologous therapy.

PreclinicalstudiesusingtransplantationofMSCs
in post-infarct mice demonstrated improved
left ventricular function and reduction in infarct
size (Refs 62, 64, 65, 66, 67, 68, 69), and a decrease
in mortality (Ref. 70). These improvements were
seen despite small numbers of cells undergoing
differentiation to cardiomyocytes (Refs 68, 71,
72, 73). A clinical study of MSCs in 69 post-
infarct patients also demonstrated improved left
ventricular function (Ref. 74).

Difficulties may arise, however, because of the
broad differentiation capacity of MSCs. There
remains significant heterogeneity among MSC
populations and thus they are less predictable
when implanted. Most notably, some studies
found that implanted MSCs had differentiated
into osteoblasts inside ventricular tissue
(Refs 75, 76). This is an obvious cause for
concern and needs to be addressed prior to full-
scale therapy.

Endothelial progenitor cells
Another bone marrow cell type, the endothelial
progenitor cell (EPC), has shown great promise
as a potential therapy. Angiogenesis was once
thought to occur solely though the proliferation
of mature endothelial cells at sites of injury.
This was challenged with the discovery that
bone-marrow-derived EPCs home to sites of
injury and incorporate into the
microvasculature (Refs 77, 78). This
revolutionised our understanding of vascular
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growth and repair and became an intriguing
concept for therapeutic manipulation.

Although there is some controversy regarding
their true definition, EPCs can be identified by
their ability to acquire endothelial cell
characteristics in culture and in vivo. They
express cell-surface makers such as cluster of
differentiation molecule 133 (CD133), the
vascular endothelial growth factor receptor 2
kinase (VEGFR-2; also known as KDR), CD34
and vascular endothelial cadherin
(VE-cadherin). Of these, CD34þ and CD133þ

cells are the most widely recognised and
utilised, although these markers are also shared
by haematopoietic stem cells (Ref. 79). EPCs are
mobilised from bone marrow in such injurious
states as burns, myocardial infarction and
cancer (Refs 80, 81, 82, 83). Furthermore, they
have been shown to contribute anywhere from
5% to 25% of neovessel formation (Refs 84, 85).
Not only do EPCs aid in vasculogenesis, but
there is also evidence that they can differentiate
to cardiomyocytes (Ref. 86).

Subsequently, the search began to find ways to
enhance their mobilisation or to directly
incorporate them into the vasculature of injured
tissues. Both VEGF and granulocyte colony-
stimulating factor (G-CSF) have been shown to
increase EPC mobilisation from bone marrow
(Refs 87, 88, 89). It should also be noted that
statins (3-hydroxy-3-methylglutaryl coenzyme-A
reductase inhibitors) have been shown to
stimulate the mobilisation of EPCs from the bone
marrow as well, pointing to yet another aspect of
the ever-evolving understanding of the many
therapeutic benefits of the drug (Refs 90, 91).

The first preclinical studies with implanted
EPCs were hind-limb ischaemia experiments,
which demonstrated significant improvement in
blood flow recovery and limb salvage (Refs 77,
92, 93). Furthermore, injection of EPCs into
infarcted myocardium improved left ventricular
function and inhibited fibrosis (Refs 79, 94, 95).
These results led to clinical experiments to
assess safety and feasibility (Refs 96, 97, 98).
The results of several small trials have shown
trends toward improvement in left ventricular
function with both acute and chronic ischaemia,
without adverse effects (Refs 97, 99, 100, 101).

EPCs have already found a niche in the field of
interventional cardiology. The earliest stents used
were bare metal stents without drug coating.
Although beneficial, these stents have an

increased tendency to restenose (narrowing of
the vessel via a localised inflammatory
response) over time. Drug-eluting stents
(impregnated with various chemicals that
inhibit neointimal thickening) reduce the
restenosis rate, but increase rates of in-stent
thrombosis, a potentially fatal event. A newer
technology for stents may be on the horizon.
GENOUS stents are coated with anti-CD34
antibodies, which serve to trap circulating EPCs
and augment the endothelialisation process in
an effort to prevent restenosis (Ref. 102). They
have already proven safe for implantation and
ongoing studies will assess whether we are able
to reduce the restenosis rate without the
concern for in-stent thrombosis.

There are, however, barriers to the use of EPCs
as therapeutic agents. First, is the heterogeneity of
this cell population. EPCs circulating in the
peripheral blood span the full range of
differentiation from angioblasts to mature
endothelial cells. This in part could explain
differences in results from various studies.
Second, the stem cell pool of EPCs is quite
limited and only through ex vivo expansion can
one attain appreciable numbers to surmount
any significant injury or ischaemic event
(Ref. 79). Last, the circulating pool of EPCs is
reduced in patients with cardiac ischaemic
disease comorbidities such as diabetes mellitus,
hypertension and hypercholesterolaemia
(Refs 103, 104). This is problematic as this
cohort is essentially the very one that would
need to be treated with EPCs – namely patients
with coronary artery disease and other
ischaemic risk factors. These challenges require
further research to enhance the therapeutic
efficiency of EPCs in ischaemic tissue.

Skeletal myoblasts
Skeletal myoblasts have been seen as an attractive
source of stem cells and were among the earliest
cell types considered for cardiac repair. Often
called satellite cells, they are found beneath the
basal membrane of muscle tissue where they lie
dormant until stimulated to proliferate by
muscle injury or disease (Ref. 105). These cells
are further differentiated than ESCs and are
thus less prone to teratoma formation.
Furthermore, they can be harvested from the
host, expanded in vitro, and autologously
reimplanted, thus avoiding the need for
immunosuppression (Ref. 106). Skeletal
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myoblasts are especially apt for cardiac repair as
they are resistant to ischaemia, an inherent
obstacle to the function of stem cells in injured
myocardium (Ref. 107). Finally, skeletal
myoblasts have the capacity to differentiate in
vitro into nonmuscle cell types (Refs 108, 109).
These properties prompted their consideration
in cardiac repair.

Animal transplantation experiments in cardiac
disease models were subsequently performed
with encouraging results. Most of these studies
showed improved left ventricular function and
decreased remodelling possibly because the
implanted cells form myotubules that are able to
contract (an event possibly mediated by stretch
receptors; Refs 106, 107, 110, 111, 112).
Furthermore, the cells have been shown to
decrease matrix breakdown both in the peri-
infarct area as well as remote myocardium,
which likely contributes to reduced remodelling
(Ref. 113).

However, skeletal myoblasts do not fully
differentiate into cardiomyocytes in vivo after
intramyocardial transplantation and the
contracting myotubules do not operate in
synchrony with the surrounding myocardium
(Refs 112, 114). This is due at least in part to a
lack of connexin activity and electrical coupling
with the surrounding myocardial cells.
However, regardless of the processes involved,
the improvement in left ventricular function in
animal models prompted a series of clinical
investigations.

Early clinical studies were aimed at assessing
the feasibility and safety of implantation
(Refs 107, 115, 116, 117, 118, 119). These studies
proved the therapy possible and showed that
skeletal myoblasts survive in the human heart,
although only marginal benefit was seen. Larger-
scale clinical trials were then undertaken to
assess the benefit of myoblast therapy. The most
notable to date was the MAGIC trial, which
randomised patients to receive either stem cell
injection or culture medium. Results from this
trial have been disappointing in that no
significant benefit was seen with stem cell
implantation (Ref. 120). Further clinical
studies are ongoing and may reveal differing
results.

Several barriers still remain in the use of
skeletal myoblasts. First, there has been
considerable concern regarding the potential
for arrhythmias (Refs 114, 121, 122). Early

studies did report rare cases in human patients
(Refs 117, 123). However, since then, there
have been conflicting results and the data from
more-recent large clinical trials did not record
increased arrhythmic events in vivo after
intracardial injection of skeletal myoblasts
(Refs 120, 124). Animal experiments also
showed that the electrical coupling of skeletal
myoblasts to resident cardiomyocytes is
increased when the skeletal cells are induced
to overexpress connexin 43, indicating that
there might be ways to overcome the
arrhythmogenic obstacle (Refs 125, 126).

Another limitation is the relative paucity of
engraftment of the injected cell population to
the surrounding tissue. Cellular lethality of the
order of 90% within the first few days has been
demonstrated in mice (Ref. 127). Some studies
in humans have shown similar cell death tolls
(Ref. 107). The cells that survive are scarce. In
addition, the engrafted cells differentiate into
myotubules and not cardiomyocytes and
therefore do not demonstrate a true
regenerative therapy.

Finally, there is much variability and
complexity involved in the use of skeletal
myoblast populations. For example, female
myoblasts demonstrate a higher proliferation
potential than do male lines (Ref. 128).
Moreover, although myoblasts are easy to
harvest and expand in culture, the process is
labour intensive and takes considerable time.
This largely precludes autologous use in
acute ischaemic events such as myocardial
infarction.

Cardiac stem cells
The modest functional effects of transplanted
progenitor cells from bone marrow and skeletal
muscle in human studies stimulated further
research into the natural regenerative
mechanisms of the cardiac tissue. The heart has
traditionally been viewed as a postmitotic organ
because mature cardiomyocytes withdraw from
the cell cycle and cease to proliferate.
Interestingly, contradictory data began to
accumulate as cardiomyocyte proliferation and
cycling were found under certain pathological
conditions – namely ischaemia and hypertension
(Refs 129, 130, 131). This idea was further
advanced with the discovery of male
cardiomyocytes and endothelial cells in donor
female cardiac tissue transplanted into a male
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recipient (Refs 132, 133). These findings raise the
possibility that Y-chromosome positive, male
cells migrated either from the recipient atrial
stump or the bone marrow into the cardiac tissue
and differentiated into functional
cardiomyocytes. Moreover, estimates of the death
rate levels of adult cardiomyocytes also led to the
consideration of a pool of cardiac progenitor cells
(Ref. 134). This evidence prompted a search to
locate such resident cardiac cells. Subsequently,
several different cell types were discovered in the
adult heart with stem cell characteristics.

For example, a typical property of some stem cell
populations is the cytoplasmic exclusion of vital
dyes such as Hoechst 33342 and Rhodamine 123.
The dye-negative cells have been called the side
population (SP) cells. SP cells have been
identified in various organs including bone
marrow, skeletal muscle and adipose tissue
(Ref. 135). Staining of dissociated cardiac tissue
revealed that the heart also has a resident pool of
SP cells (Refs 136, 137). Interestingly, isolated
cardiac SP cells can differentiate to
cardiomyocytes, suggesting that they represent
cardiac progenitor cells (Refs 138, 139). SP cells
are mobilised after cardiac injury (Ref. 140) but
their regenerative potential is still unclear. One
study documented differentiation of transplanted
SP cells to cardiomyocytes, endothelial cells and
smooth muscle cells (Ref. 139).

Asecondputativeresidentprogenitorpopulation
comprises cells expressing the stem cell factor
receptor c-Kit (also known as CD117), which are
located in small clusters within the adult heart
(Ref. 141). c-Kitþ cells have regenerative potential
after transplantation, giving rise to
cardiomyocytes, endothelial cells and smooth
muscle cells. c-Kitþ cell transplantation after
ischaemic injury leads to significant improvement
in ventricular function (Refs 141, 142, 143, 144).

A third cell type in the heart with stem cell
features consists of cells expressing the stem
cell antigen 1 (Sca-1þ) (Ref. 145). Sca-1þ cells
home to infarcted myocardium and
differentiate to cardiomyocytes around the
injury area (Ref. 145). The Sca-1þ cell
subpopulation, which does not express CD31,
was shown to differentiate into both
cardiomyocytes and endothelial cells in culture
(Ref. 146). Transplantation of Sca-1þCD312 cells
in mice after myocardial infarction improved
cardiac function and promoted new blood
vessel formation (Ref. 146).

Finally, cardiac progenitors from mouse hearts
were isolated by enzymatic digestion to obtain
round cells that form so-called cardiospheres in
suspension (Ref. 147). Cardiosphere-derived
cells can differentiate to cardiomyocytes,
endothelial cells and smooth muscle cells. An
equivalent human cardiac stem cell population
can be obtained via endomyocardial biopsy
and subsequently grown in suspension as
cardiospheres that exhibit remarkable
proliferation and differentiation capacity
(Refs 147, 148, 149). Once isolated, this cell
population can be induced to differentiate into
spontaneously beating aggregates of
cardiomyocytes, which can then be implanted
into injured myocardium at a later time
(Refs 149, 150). The injection of cardiosphere-
derived cells has shown some benefit in
preclinical studies (Refs 148, 149, 150, 151). In
much the same manner as the previous
progenitor cell populations, the benefit appears
to be largely by way of improved left
ventricular function. There has been some
regeneration seen in small numbers, but not
enough to explain the functional improvement.

Cardiac stem cells (as well as stem cells from
other tissues) appear to reside in specialised
niches, which support the growth and
maintenance of the stem cell pool (Refs 152,
153). Putative niches have been localised
throughout the myocardium, concentrated in
deep tissue at the atria and apex (Refs 141, 154).
Recent evidence has also shown that there is a
marked increase in the number and migration
of such cells to the injury areas following an
ischaemic insult (Ref. 145). Although the
different cardiac stem cell pools are small
relative to the mature resident cardiomyocytes,
they are believed to be the source of new cells
in normal organ homeostasis as well as in
stressed myocardium (Ref. 155). At present, it is
unclear if the various cardiac stem cells are
distinct types or whether they represent
different stages of a single cell lineage.

One seemingly contradictory aspect of
endogenous cardiac stem cells is the apparent
lack of regeneration seen in the chronic damage
that occurs in ischaemic cardiomyopathy. It is
puzzling why these pools of stem cells, which
are induced to differentiate and migrate to sites
of injury, are not able to reverse tissue losses. It
is possible that the resident stem cell
populations do not survive in the hypoxic
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environment after an ischaemic insult and they
undergo apoptosis along with mature
myocardium. Furthermore, it appears that the
cardiac stem cell pool diminishes with ageing,
possibly contributing to the lack of efficacy of
regeneration in elderly individuals (Ref. 155).
Since it is largely the elderly who experience
increased mortality from cardiomyopathies, it
raises the need to enhance or rejuvenate this
senescent stem cell population.

Favourable paracrine effects of stem cells
As experimental evidence about the outcomes of
stem cell therapy accumulated, a peculiar pattern
began to emerge. Although many studies
involving different stem cell populations and
various administration modalities show
significant benefit (often in the form of
improved left ventricular function), there seems
to be little differentiation of the infused stem
cells into mature cardiovascular cell types.
Moreover, few of the implanted cells persist for
any appreciable length of time (Refs 127, 156).
Also, the cardioprotective effects of stem cells
are already evident 24 h after transplantation, a
time frame that is too short for true
regeneration (Ref. 157). These results have been
recapitulated in many studies whereupon
following a brief inhabitance in the ischaemic
milieu the infused cells can no longer be found
despite the persistent functional improvement
of the myocardium (Ref. 158). Another
peculiarity is a similar benefit has been derived
using a wide range of stem cell populations.
Finally, those studies that do demonstrate
engraftment have shown numbers so small that
it is hard to attribute the haemodynamic
improvements to the incorporated cells.

The benefits witnessed therefore require
further elucidation. If the implanted cells do not
remain in the tissue and differentiate into
functional cardiomyocytes in appreciable
numbers, then how is this benefit derived?
The hypothesis began to emerge that the stem
cell populations exert a favourable paracrine
effect on the injured myocardium, perhaps
preventing apoptosis and promoting healing
(Refs 156, 159).

Indeed, various studies showed that progenitor
cells secret survival factors, which stimulate
tissue recovery after ischaemic injury and
minimise the infarct size (Refs 156, 157, 160,
161, 162). The beneficial effects have been thus

far attributed to specific products of
transplanted progenitor cells such as thymosin
b4, which promotes wound healing, or the Wnt
antagonist SFRP-2 (secreted frizzled-related
protein 2), which protects cardiomyocytes from
hypoxia-induced apoptosis (Refs 163, 164, 165).
In addition, based on the gene expression
profiles of various stem cell types (Refs 156,
166), it is likely that stem-cell-secreted factors
attenuate inflammation, decrease apoptosis,
induce angiogenesis, recruit other stem cells
and reduce the extent of fibrosis (Refs 156, 162,
167) (Fig. 1).

Taken together, the experimental evidence
suggests that current benefits derived from
stem cell therapy are at least in part secondary
to a favourable paracrine effect of the stem
cells acting on the host tissue. Whether or not
the administration of isolated stem cell
products or the physical presence of stem
cells in the injury site is a more ideal form of
therapy remains to be seen. However, it is
apparent that in response to ischaemia many
factors, acting in concert, work to limit damage
and enhance repair. It is therefore possible that
by providing the injured tissue with a
functioning stem cell population, which
can react to the internal milieu and respond
with sustainable, targeted production of
cardioprotective peptides, greater damage
attenuation can be achieved than by simply
infusing fixed quantities of specific agents.
Perhaps the dynamic presence of a tissue repair
biocatalyst is the most beneficial effect of stem
cell implantation, which better equips injured
tissue with the tools and blueprints to aid
recovery and regeneration.

Future directions
Since the discovery of various resident stem cell
populations and the subsequent ability to
extract and culture them for therapeutic use,
there has been a wealth of research into the
potential of regenerating injured tissue. The
current evidence suggests that stem cell therapy
has great promise for attenuating remodelling
and transforming inert scar into biochemically
functional myocardium. However, the past
decade has shown that translating the potential
of stem cell therapy into actual practice is not
easy, and many barriers would need to be
overcome before this therapy attains its full
potential.
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Despite these obstacles, the observed functional
improvement with or without long-term
engraftment of the stem cells has spurred
continued animal and clinical studies along
several different directions. First, there is
ongoing research into ways to better enhance the
recruitment, survival and long-term engraftment

of implanted stem cells (Refs 168, 169). If true
regeneration is to take place, then a sizeable
percentage of the stem cells need to remain
viable, differentiate into fully functional
cardiomyocytes and incorporate into the
resident tissue. Second, further analyses of stem
cells that exhibit robust cardiac potential (i.e.

Putative paracrine effects of stem cells in ischaemic myocardium 
Expert Reviews in Molecular Medicine © Cambridge University Press 2009. Re-use permitted under a 
Creative Commons Licence – by-nc-sa.
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Figure 1. Putative paracrine effects of stem cells in ischaemic myocardium. Stem cells secrete factors that:
promotesurvival of ischaemiccardiomyocytes and reduceapoptosis; induce angiogenesis, improving perfusion
around the ischaemic area; modulate protease activity and scar formation; and produce factors that recruit
circulating (pink) or resident (orange) progenitor cells. The improved disease environment attenuates
inflammation and fibrosis, curtailing subsequent cardiac tissue remodelling (based on Refs 156, 162). On the
figure, inflammation is depicted by a monocyte, macrophage and neutrophil; scar (or granulation) tissue is
represented by myofibroblasts, macrophages and capillaries in a collagen matrix. Abbreviations: ANG,
angiogenin; ANGPT, angiopoietin; CTGF, connective tissue growth factor; FGF, fibroblast growth factor; HGF,
hepatocyte growth factor; IGF, insulin-like growth factor; IL, interleukin; LIF, leukaemia inhibitory factor;
CCL2, chemokine (C-C motif) ligand 2 (also known as monocyte chemoattractant protein 1; MCP-1); MMP,
matrix metalloproteinase; PDGF, platelet-derived growth factor; SCF, stem cell factor (c-Kit ligand); SDF,
stromal-cell-derived factor; SFRP, secreted frizzled-related protein; Tb4, thymosin b4; TGF, transforming
growth factor; TIMP, tissue inhibitor of metalloproteinases; VEGF, vascular endothelial growth factor.
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human ESCs and autologous iPS cells) are also
needed to generate pure cell populations of
cardiomyocytes with appropriate functional
characteristics. Third, the interesting notion that
stem cells exert their influence largely through
paracrine activity has sparked research into
how this effect is brought about. By gaining
more understanding of the molecular
interactions between donor stem cells and host
tissue, we could discover ways to harness this
effect. Finally, the discovery of various cardiac
stem cell populations has renewed interest in
the innate regenerative capacity of the human
heart to enhance endogenous repair or mimic it
with exogenous stem cell therapy. Although
much more work needs to be done, stem cell
therapies in conjunction with current treatment
modalities may help to further reduce the
mortality and improve the quality of life in
cardiovascular disease patients.
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Further reading, resources and contacts

Publications
Leri, A., Kajstura, J. and Anversa, P. (2005) Cardiac stem cells and mechanisms of myocardial regeneration.

Physiological Reviews 85, 1373-1416
A comprehensive overview of theoretical and practical aspects of cardiac regeneration.

Menasche, P. (2008) Skeletal myoblasts and cardiac repair. Journal of Molecular and Cellular Cardiology 45,
545-553

A frank discussion regarding the past and future of skeletal myoblasts for cardiac repair.

Bergmann, O. et al. (2009) Evidence for cardiomyocyte renewal in humans. Science 324, 98-102
Measuring 14C (which did not exist in the atmosphere prior to nuclear testing) incorporation into human

cardiomyocytic DNA, this interesting study concludes that the adult human heart regenerates with a
slow, age-dependent, pace.

Burt, R.K. et al. (2008) Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant
diseases. Journal of the American Medical Association 299, 925-936

A detailed summary of clinical trials using blood- and bone-marrow-derived stem cells to treat nonmalignant,
nonhaematological indications.

Chien, K.R., Domian, I.J. and Parker, K.K. (2008) Cardiogenesis and the complex biology of regenerative
cardiovascular medicine. Science 322, 1494-1497

A fascinating review focusing on the regenerative potential of the embryonic cardiac progenitor cell population
delineated by expression of the transcription factor islet-1.

Dimmeler, S. and Zeiher, A.M. (2008) Cell therapy of acute myocardial infarction: open questions. Cardiology
113, 155-160

A concise assessment of important issues in the clinical application of stem cells to treat cadiac disease.

Reffelmann, T., Könemann, S. and Kloner, R.A. (2009) Promise of blood- and bone marrow-derived stem cell
transplantation for functional cardiac repair: putting it in perspective with existing therapy. Journal of the
American College of Cardiology 53, 305-308

An intriguing analysis showing that functional improvements achieved by cell transplantation are comparable
with established therapeutic strategies.

Reinecke, H. et al. (2008) Cardiogenic differentiation and transdifferentiation of progenitor cells. Circulation
Research 103, 1058-1071

A stimulating discussion about the cardiogenic potential of various stem cell types.

Segers, V.F. and Lee, R.T. (2008) Stem-cell therapy for cardiac disease. Nature 451, 937-942
A concise, well-illustrated summary about the outcome of stem cell therapies for cardiac disease.

Uccelli, A., Moretta, L. and Pistoia, V. (2008) Mesenchymal stem cells in health and disease. Nature Reviews
Immunology 8, 726-736

An exciting and multifaceted look at the biology of mesenchymal stem cells.

Slack, J.M. (2008) Origin of stem cells in organogenesis. Science 322, 1498-1501
A developmental biologist’s thought-provoking, often contrarian, view of adult tissue regeneration.

Website
The public homepage of the Cardiovascular Cell Therapy Research Network provides background and

information for several ongoing multicentre clinical trials in the USA using stem cells for cardiac therapy:

http://ccct.sph.uth.tmc.edu/cctrn/Public/PublicHome.aspx
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Features associated with this article

Figure
Figure 1. Putative paracrine effects of stem cells in ischaemic myocardium.

Table
Table 1. Characteristics of stem cell populations used for cardiac repair.
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